基于中主应力强度准则岩石损伤本构模型研究
Study on the Constitutive Model of Rock Damage Based on Intermediate Principal Stress Criterion

作者: 刘斯奇 * , 郑永来 , 邓树新 :同济大学土木工程学院,上海;

关键词: 岩石破裂损伤中主应力本构模型Rock Failure Damage Intermediate Principal Stress Constitutive Model

摘要:
从探讨基于中主应力效应的新的岩石微元强度表示方法及其服从Weibull随机分布的特点出发,并引入损伤修正系数 ,基于岩石三轴应力应变试验曲线,建立了岩石损伤统计本构模型。在此基础上,重点研究了Weibull分布参数以及损伤修正系数对岩石损伤本构统计模型的影响,并结合岩石三轴应力应变试验曲线的特点,对岩石损伤本构统计本构模型进行了合理修正。与试验结果及前人研究结果比较,该模型可以更好地模拟岩石在低围压下应变软化的情况,具有广阔的应用前景。

Abstract: By discussing the form of new rock micro-unit strength based on intermediate principal stress criterion, which satisfies Weibull random distribution, and introducing a damage correction factor q, a statistical constitutive model of rock damage was developed based on the stress-strain curve of tri-axial tests for rocks. Moreover, the effect of the parameters of Weibull distribution and the damage correction factor on the model was studied. The model was rectified according to the properties of tri-axial stress-strain test curve of rock. Compared with the existing research results, this model can better simulate the rock strain softening under low confining pressure. Therefore, this model has broad prospects for application.

文章引用: 刘斯奇 , 郑永来 , 邓树新 (2016) 基于中主应力强度准则岩石损伤本构模型研究。 土木工程, 5, 171-180. doi: 10.12677/HJCE.2016.55023

参考文献

[1] 冯西桥, 余寿文. 准脆性材料细观损伤力学[M]. 北京: 高等教育出版社, 2002.

[2] Kachanov, L. (2013) Introduction to Con-tinuum Damage Mechanics. Springer Science & Business Media, Berlin.

[3] Krajcinovic, D. (2000) Damage Mechanics: Accomplishments, Trends and Needs. International Journal of Solids and Structures, 37, 267-277. http://dx.doi.org/10.1016/S0020-7683(99)00081-5

[4] 余寿文, 冯西桥. 损伤力学[M]. 北京: 清华大学出版社, 1997.

[5] Krajcinovic, D. (1996) Damage Mechanics. Elsevier, Amsterdam.

[6] 谢和平. 岩石混凝土损伤力学[M]. 徐州: 中国矿业大学出版社, 1990.

[7] 俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994(2): 1-10.

[8] Ewy, R.T. (1999) Well Bore-Stability Predictions by Use of a Modified Lade Criterion. SPE Drilling and Completion, 14, 85-91. http://dx.doi.org/10.2118/56862-PA

[9] Lemaitre, J., Sermage, J.P. and Desmorat, R. (1999) A Two Scale Damage Concept Applied to Fatigue. International Journal of Fracture, 97, 67-81. http://dx.doi.org/10.1023/A:1018641414428

[10] 杨光松. 损伤力学与复合材料损伤[M]. 北京: 国防工业出版社, 1995.

[11] 许金余, 范建设, 吕晓聪. 围压条件下岩石的动态力学特性[M]. 西安: 西北工业大学出版社, 2012.

[12] Krajcinovic, D. and Silva, M.A.G. (1982) Statistical Aspects of the Continuous Damage Theory. International Journal of Solids and Structures, 18, 551-562. http://dx.doi.org/10.1016/0020-7683(82)90039-7

[13] 唐春安. 岩石破裂过程中的灾变[M]. 北京: 煤炭工业出版社, 1993.

[14] 曹文贵, 方祖烈. 岩石损伤软化统计本构模型之研究[J]. 岩石力学与工程学报, 1998, 17(6): 628-633.

[15] 曹文贵, 张升. 基于Mohr-Coulomb准则的岩石损伤统计分析方法研究[J]. 湖南大学学报: 自然科学版, 2005, 32(1): 43-47.

[16] 蒋维, 邓建, 李隐. 基于对数正态分布的岩石损伤本构模型研究[J]. 地下空间与工程学报, 2010, 6(6): 1190-1194.

[17] 赵衡. 岩石变形特性与变形全过程统计损伤模拟方法研究[D]: [博士学位论文]. 长沙: 湖南大学, 2011.

[18] Zheng, Y. and Deng, S. (2015) Failure Probability Model considering the Effect of Intermediate Principal Stress on Rock Strength. Mathematical Problems in Engineering, 2015, Article ID: 960973. http://dx.doi.org/10.1155/2015/960973

[19] Kawamoto, T., Ichikawa, Y. and Kyoya, T. (1988) Deformation and Fracturing Behaviour of Discontinuous Rock Mass and Damage Mechanics Theory. International Journal for Numerical and Analytical Methods in Geomechanics, 12, 1-30. http://dx.doi.org/10.1002/nag.1610120102

[20] 薛云亮, 李庶林, 徐宏斌, 等. 考虑残余强度的岩石损伤统计本构模型[C]//中国水利学会. 第二届中国水利水电岩土力学与工程学术讨论会论文集: 2008年卷. 武汉: 武汉大学学报: 工学版: 2008, 7.

分享
Top