基于BP人工神经网络模型的沙柳河流域径流模拟后处理研究
Runoff Simulation Post-Processing of Shaliu River Basin Based on BP Artificial Neural Network Model

作者: 陈 昕 , 姚晓磊 , 鱼京善 :北京师范大学水科学研究院,北京;

关键词: BP人工神经网络沙柳河流域径流模拟后处理SWAT模型BP-ANN Shaliu River Basin Runoff Simulation Post-Processing SWAT Model

摘要:
基于自主开发的BP人工神经网络模拟应用工具V1.0,将与SWAT模型相同的气象数据与新增的月校正因子和SWAT模型的月径流模拟值作为输入层变量,以实测径流为训练数据,对沙柳河流域径流模拟进行后处理,比较其与单独运用SWAT模型和BP人工神经网络模型进行径流模拟的结果,以此评价BP人工神经网络用于径流模拟后处理的精度与适用性。研究结果表明基于自主开发的BP人工神经网络后处理能显著提高该流域径流模拟精度,且操作简便,实现了模型的率定和验证同步进行,适用于沙柳河流域的径流模拟研究。

Abstract: Two factors (monthly correction factor and monthly runoff simulation values of SWAT model) and the same meteorological data as SWAT were selected as input layer variables, and observed runoff as data for calibration and validation to do the post-processing of Shaliu River monthly runoff simulation based on self-developed BP Artificial Neural Network Tool V1.0. Meanwhile, the results were compared with SWAT model and BP-ANN model, evaluating the accuracy and applicability of runoff simulation post- processing. The application results in Shaliu River basin indicate that BP post-processing not only improves the simulation accuracy significantly, but also completes calibration and validation at the same time.

文章引用: 陈 昕 , 姚晓磊 , 鱼京善 (2016) 基于BP人工神经网络模型的沙柳河流域径流模拟后处理研究。 水资源研究, 5, 391-401. doi: 10.12677/JWRR.2016.54045

参考文献

[1] 余楚, 吕敦玉. 利用BP神经网络模型进行分类径流模拟[J]. 南水北调与水利科技, 2014, 12(5): 109-112. YU Chu, LY Dunyu. Application of BP neural network in classified runoff simulation. South-to-North Water Transfers and Water Science & Technology, 2014, 12(5): 109-112. (in Chinese)

[2] 刘小园. 青海湖水位变化趋势分析[J]. 干旱区研究, 2001, 18(3): 58-62. LIU Xiaoyuan. Analysis on the change trend of water level of Qinghai lake. Arid Zone Research, 2001, 18(3): 58-62. (in Chi-nese)

[3] 杨贵林, 刘国东. 青海湖水位下降与趋势预测[J]. 湖泊科学, 1992, 4(3): 17-24. YANG Guilin, LIU Guodong. On the water level decline and its tendency in Qinghai lake. Journal of Lake Sciences, 1992, 4(3): 17-24. (in Chinese)

[4] 毛慧慧, 延耀兴, 张杰. 水文预报方法研究现状与展望[J]. 科技情报开发与经济, 2005, 15(19): 172-173. MAO Huihui, YAN Yaoxing and ZHANG Jie. The present situation and prospect of the hydrographic forecasting methods. Sci/Tech Information Development & Economy, 2005, 15(19): 172-173. (in Chinese)

[5] 邵月红, 林柄章, 刘永和. 基于径流分类的流域降雨–径流过程动态神经网络建模[J]. 地理科学, 2012(1): 74-80. SHAO Yuehong, LIN Bingzhang and LIU Yonghe. Rainfall-runoff simulation based on runoff classification using dynamic ar-tificial neural networks. Scientia Geographica Sinica, 2012(1): 74-80. (in Chinese)

[6] 黄清华, 张万昌. SWAT分布式水文模型在黑河干流山区流域的改进及应用[J]. 南京林业大学学报(自然科学版), 2004, 28(2): 22-26. HUANG Qinghua, ZHANG Wanchang. Hydrological modeling on high altitude, cold, semi-arid catchment of Heihe River Basin, China. Journal of Nanjing Forestry University (Natural Sciences Edition), 2004, 28(2): 22-26. (in Chinese)

[7] 杨桂莲, 郝芳华, 刘昌明, 等. 基于SWAT模型的基流估算及评价——以洛河流域为例[J]. 地理科学进展, 2003, 22(5): 463-471. YANG Guilian, HAO Fanghua, LIU Changming, et al. The study on base flow estimation and assessment in SWAT—Luohe Basin as an example. Process in Geography, 2003, 22(5): 463-471. (in Chinese)

[8] 王亚军, 周陈超, 贾绍凤, 等. 基于SWAT模型的湟水流域径流模拟与评价[J]. 水土保持研究, 2007, 14(6): 394-397. WANG Yajun, ZHOU Chenchao, JIA Shaofeng, et al. Simulation and assessment of natural runoff in Huangshui River Basin based on SWAT. Research of Soil and Water Conservation, 2007, 14(6): 394-397. (in Chinese)

[9] 龙银平, 张耀南, 赵国辉, 等. SWAT模型水文过程模拟的数据不确定性分析——以青海湖布哈河流域为例[J]. 冰川冻土, 2012, 34(3): 660-667. LONG Yinping, ZHANG Yaonan, ZHAO Guohui, et al. The uncertainty in meteorological and hydrological processes modeled by using SWAT model. Journal of Glaciology and Geocryology, 2012, 34(3): 660-667. (in Chinese)

[10] 杨军军, 高小红, 李其江, 等. 湟水流域SWAT模型构建及参数不确定性分析[J]. 水土保持研究, 2013, 20(1): 82-88. YANG Junjun, GAO Xiaohong, LI Qijiang, et al. SWAT model construction and uncertainty analysis on its parameters for the Huangshui River Basin. Research of Soil and Water Conservation, 2013, 20(1): 82-88. (in Chinese)

[11] 张伟. 基于人工神经网络的径流预测研究[D]: [硕士学位论文]. 石河子: 石河子大学, 2008. ZHANG Wei. Research of runoff forecasting based on artificial neural network. Shihezi: Shihezi University, 2008. (in Chi-nese)

[12] 曹广学, 张世泉. BP模型在降雨径流预报中的应用研究[J]. 太原理工大学学报, 2005, 36(3): 350-353. CAO Guangxue, ZHANG Shiquan. Study on applying BP model of rainfall-runoff forecasting. Journal of Taiyuan University of Technology, 2005, 36(3): 350-353. (in Chinese)

[13] 鞠琴, 郝振纯, 余钟波, 等. 基于人工神经网络的降雨径流模拟研究[J]. 辽宁工程技术大学学报, 2007, 26(6): 940-943. JU Qin, HAO Zhenchun, YU Zhongbo, et al. Study on rainfall-runoff simulation based on artificial neural networks. Journal of Liaoning Technical University, 2007, 26(6): 940-943. (in Chinese)

[14] 刘刚, 刘纪平, 赵荣, 等. BP神经网络模型在澜沧江流域径流量模拟中的应用[J]. 测绘科学技术学报, 2008, 25(4): 271- 274. LIU Gang, LIU Jiping, ZHAO Rong, et al. Application of BP neural networks in simulating the runoff of the Lancang River Basin. Journal of Geomatics Science and Technology, 2008, 25(4): 271-274. (in Chinese)

[15] 梁国华, 习树峰, 王本德. 基于BP神经网络的旬降雨径流相关预报模型[J]. 水力发电, 2009, 35(8): 10-12. LIANG Guohua, XI Shufeng and WANG Bende. Ten-day correlation forecast model of rainfall and runoff based on BP neural network. Water Power, 2009, 35(8): 10-12. (in Chinese)

[16] 陶凤玲, 袁俊英, 刘海波, 等. 基于人工神经网络的龙羊峡水库入库径流预报[J]. 青海大学学报(自然科学版), 2010, 28(4): 40-43. TAO Fengling, YUAN Junying, LIU Haibo, et al. Forecast to Longyangxia reservoir inflow runoff based on an artificial neural network. Journal of Qinghai University (Nature Science), 2010, 28(4): 40-43. (in Chinese)

[17] 刘晓刚, 褚桂红. BP人工神经网络模型及其在年径流预报中的应用[J]. 内蒙古水利, 2011(4): 76-78. LIU Xiaogang, CHU Guihong. BP artificial neural network model and its application in annual runoff forecast. Inner Mongolia Water Resources, 2011(4): 76-78. (in Chinese)

[18] 李娇, 姜明媛, 孙文超, 鱼京善, 姚晓磊. 基于BP神经网络的泉州市山美水库降雨径流模拟研究[J]. 北京师范大学学报(自然科学版), 2013, 49(Z1): 170-174. LI Jiao, JIANG Mingyuan, SUN Wenchao, YU Jingshan and YAO Xiaolei. Rainfall-runoff simulation of Shanmei reservoir in Quanzhou city on BP neural networks. Journal of Beijing Normal University (Natural Science), 2013, 49(Z1): 170-174. (in Chinese)

[19] 舒畅, 姜铁兵, 蔡华, 等. 降雨–径流过程的ANN建模[J]. 水电能源科学, 1999, 17(2): 56-58. SHU Chang, JIANG Tiebing, CAI Hua, et al. Rainfall-Runoff modeling with artificial neural networks. International Journal Hydroelecctric Energy, 1999, 17(2): 56-58. (in Chinese)

[20] JU, Q., YU, Z., HAO, Z., ZHU, C. and LIU, D. Hydrologic si-mulations with artificial neural networks[C]//International Conference on Natural Computation. IEEE, 2007: 22-27.

[21] 孙伟. 基于SWAT模型石羊河流域径流模拟研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2013. SUN Wei. Runoff simulation of the Shiyang River basin using SWAT model. Lanzhou: Lanzhou University of Technology, 2013. (in Chinese)

[22] 杨桂莲, 郝芳华, 刘昌明, 张雪松. 基于SWAT模型的基流估算及评价——以洛河流域为例[J]. 地理科学进展, 2003, 22(5): 463-471. YANG Guilian, HAO Fanghua, LIU Changming and ZHANG Xueson. The study on baseflow estimation and assessment in SWAT—Luohe basin as an example. Progress in Geography, 2003, 22(5): 463-471. (in Chinese)

[23] 鞠琴, 郝振纯, 余钟波, 朱长军, 刘德东. 基于人工神经网络的降雨径流模拟研究[J]. 辽宁工程技术大学学报, 2007, 26(6): 940-943. JU Qin, HAO Zhenchun, YU Zhongbo, ZHU Changjun and LIU Dedong. Study on rainfall-runoff simulation based on artificial neural networks. Journal of Liaoning Technical University, 2007, 26(6): 940-943. (in Chinese)

分享
Top