中东地区生物碎屑灰岩储层渗透率预测方法研究

作者: 郭海峰 :中石油长城钻探工程有限公司解释研究中心, 北京;

关键词: 生物碎屑灰岩渗透率预测孔隙结构储层分类常规测井模型选择

摘要:
中东地区生物碎屑灰岩储层由于孔隙结构复杂、非均质性强,造成同等孔隙度下渗透率相差多个数量级,准确预测渗透率一直是一个难点。以伊拉克H油田M层为例,提出一种基于岩心数据和常规测井资料渗透率精细预测方法。在储层分类的基础上,以“分层分类”原则作为指导建立多个渗透率模型,将孔隙结构评价转换为模型选择问题。分析发现,常规测井的孔隙度、电阻率和自然伽马对孔隙结构较为敏感,可用于渗透率计算时的模型选择。该方法的计算结果与岩心数据一致,提高了常规测井渗透率的预测精度。

文章引用: 郭海峰 (2015) 中东地区生物碎屑灰岩储层渗透率预测方法研究。 石油天然气学报, 37, 26-30. doi:

参考文献

[1] Moutaz Al-Dabbas, Jassim Al-Jassim, Saad Al-Jumaily. Depositional environments and porosity distribution in regressive limestone reservoirs of the Mishrif Formation, Southern Iraq [J] . Arabian Journal of Geosciences, 2010, 3 (1): 67~78.

[2] 罗蛰谭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,l986:31~40.

[3] BabadagliT, Al-SalmiS. A review of permeability-prediction methods for carbonate reservoirs using well-log data [J] . SPE Reservoir Evaluation & Engineering, 2004, 7 (2): 75~88.

[4] GomaaN, Al-AlyakA, OuzzaneD, et al. Case study of permeability, vug quantification, and rock typing in a complex carbonate [J] . SPE102888, 2006.

[5] Burrowes A, Moss A, Sirju C, et al. Improved permeability prediction in heterogenous carbonate formations [J] . SPE131606, 2010.

[6] Mohaghegh S. Virtual-intelligence applications in petroleum engineering: Part 1-artificial neural networks [J] . Journal of Petroleum Technology, 2000, 52 (9): 64~72.

[7] Trevizan W, Netto P, Coutinho B, et al. Method for predicting permeability of complex carbonate reservoirs using NMR logging measurements [J] . Petrophysics, 2014, 55 (3): 240~252.

[8] Al-FarisiO, Belgaied A, Elhami M, et al. Electrical resistivity and Gamma-ray logs: Two physics for two permeability estimation approaches in Abu Dhabi Carbonates [J] . SPE88687, 2004.

分享
Top