改进的分裂Bregman方法荧光显微图像复原
Improved Split Bregman Method for Fluorescence Microscopic Image Restoration

作者: 张长春 , 王瑜 * , 肖洪兵 :北京工商大学计算机与信息工程学院,北京;

关键词: 分裂Bregman算法加权全变差正则化图像复原Split Bregman Algorithm Weighted Total Variation Regularization Image Restoration

摘要: 荧光显微图像复原有着很多重要的应用,例如,天文成像,电子显微镜成像,单光子发射计算机断层成像术和正电子发射断层成像技术等等。传统基于全变差的分裂Bregman算法能够很好地保护图像边缘和纹理信息,但在图像的平滑区域会产生严重的阶梯效应,针对这一问题,本文提出了一种复原算法,主要考虑两点,一是采用全变差(Total Variation, TV)正则化模型,可以很好地复原模糊图像。二是引入权函数,对TV进行加权抑制阶梯效应,同时保护了图像的纹理信息。通过对参数的合理选择,获得最佳的复原效果,在模拟图像和真实荧光显微图像的实验结果验证了该算法的有效性和可行性。

Abstract: Fluorescence microscopic image restoration has many very important applications such as astro-nomical imaging, electronic microscopy, single particle emission computed tomography (SPECT) and positron emission tomography (PET). Traditional total variation imaging restoration based on split Bregman algorithm can preserve sharp edges and save the image texture. Serious staircase effect phenomena, however, is generally accompanied. Therefore an improved image restoration algorithm is proposed based on split Bregman in this paper, which is mainly considered two aspects. One is that the total variation regularization model is used, which is an effective tool to recover blurred images. The other is that the weight function of the total variation is involved, which can not only suppress the staircase effect, but also preserve the image texture information. By ap-propriately choosing the reasonable parameters, the better restoration results can be obtained. The experimental results on synthetic images and real fluorescence microscopic images show the effectiveness and feasibility of the proposed algorithm.

文章引用: 张长春 , 王瑜 , 肖洪兵 (2016) 改进的分裂Bregman方法荧光显微图像复原。 建模与仿真, 5, 81-88. doi: 10.12677/MOS.2016.53011

参考文献

[1] Lefkimmiatis, S., Bourquard, A. and Unser, M. (2012) Hessian-Based Regularization for 3D Microscopy Image Restoration. 9th IEEE International Symposium on Biomedical Imaging, Barcelona, 2-5 May 2012, 1731-1734.

[2] Chaux, C., Blanc-Féraud, L. and Zerubia, J. (2007) Wavelet-Based Restoration Methods: Application to 3D Confocal Microscopy. SPIE Proceedings, 6701, 78-89.
http://dx.doi.org/10.1117/12.731438

[3] Zhang, B., Fadili, J., Starck, J.-L. and Olivo-Marin, J.-C. (2007) Multiscale Va-riance-Stabilizing Transform for Mixed Poisson Gaussian Processes and Its Applications in Bio-Imaging. IEEE International Confe-rence on Image Processing, Vol. 6, San Antonio, 16 September-19 October 2007, 233-236.

[4] Getreuer, P. (2012) Total Variation Deconvolution Using Split Bregman. Image Processing on Line, 2, 158-174.
http://dx.doi.org/10.5201/ipol.2012.g-tvdc

[5] Goldstein, T. and Osher, S. (2009) The Split Bregman Algorithm for L1 Regu-larized Problems. SIAM Journal on Imaging Sciences, 2, 323-343.
http://dx.doi.org/10.1137/080725891

[6] Li, Y.F. and Feng, X.C. (2010) The Split Bregman Method for L1 Projection Problems. Acta Electronica Sinica, 38, 2471-2475.

[7] Wang, J., Lü, K., He, N. and Wang, Q. (2012) Total Variant Image Deblurring Based on Split Bregman Method. Acta Electronica Sinica, 40, 1503-1508.

[8] Rudin, L., Osher, S. and Fatemi, E. (1992) Nonliner Total Variation Based Noise Removal Algorithm. Physica D, 60, 259-268.
http://dx.doi.org/10.1016/0167-2789(92)90242-F

[9] Osher, S., Burger, M., Goldfarb, D., Xu, J.J. and Wotao, Y. (2005) An Iterative Regularization Method for Total Variation-Based Image Restoration. Multiscale Modeling and Simulation, 4, 460-489.
http://dx.doi.org/10.1137/040605412

[10] Tikhonov, A.N. and Arsenin, V.Y. (1997) Solutions of Ill-Posed Problems. V.H. Winston & Sons, Washington DC.

[11] Babacan, S., Moluna, R. and Katsaggelos, A. (2008) Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation. IEEE Transactions on Image Processing, 17, 326-339.
http://dx.doi.org/10.1109/TIP.2007.916051

[12] Goldstein, T. and Osher, S. (2009) The Split Bregman Algorithm for L1 Re-gularized Problems. SIAM Journal on Imaging Sciences, 2, 323-343.
http://dx.doi.org/10.1137/080725891

[13] Brette, S. and Dier, J. (2006) Optimized Single Site Update Algorithms for Image Deblurring. International Conference on Image Processing, Vol. 3, Lausanne, 16-19 September 1996, 65-68.
http://dx.doi.org/10.1109/ICIP.1996.560370

[14] Yin, W.T. and Yang, J.F. (2009) Alternating Direction Algorithms for Total Variation Deconvolution in Image Reconstruction. http://www.optimization-online.org/DB-HTML/2009/11/2463.html

[15] Yang, J.F., Yin, W.T., Zhang, Y. and Wang, Y.L. (2009) A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration. SIAM Journal on Imaging Sciences, 2, 569-592.
http://dx.doi.org/10.1137/080730421

[16] Setzer, S., Steidl, G. and Teuber, T. (2010) Deblurring Poissonian Images by Split Bregman Techniques. Journal of Visual Communication and Image Representation, 21, 193-199.
http://dx.doi.org/10.1016/j.jvcir.2009.10.006

分享
Top