基于BP神经网络和SVM的电厂粉尘浓度在线监测
Online Monitoring of Dust Concentration in Power Plant Based on BP Neural Network and SVM

作者: 赵一凡 , 付忠广 :华北电力大学电站设备状态监测与控制教育部重点实验室,北京 ;

关键词: 粉尘浓度在线监测BP神经网络支持向量机Dust Concentration On-Line Monitoring BP Neural Network Support Vector Machine (SVM)

摘要:
基于电厂经济环保运行的要求,需对电厂的污染物排放浓度实时监测。本文以排烟粉尘浓度为例,通过分析电厂DCS系统的在线监测数据,建立了BP神经网络和支持向量机两种粉尘浓度的在线监测模型。对模型进行实例验证(数据来源于某电厂600 MW机组),结果显示BP模型的预测精度达到96%以上,而SVM模型精度则达到97.5%以上。从总体上看,这两种模型对于粉尘浓度在线监测效果都比较理想,相对而言SVM模型的模拟的精度较高,且具有更高的泛化能力。

Abstract: For the purpose of achieving online monitoring of dust concentration, the online monitoring pa-rameters in DCS system are adopted to analyze the factors which influence the concentration of smoke dust, and the BP neural network and support vector machine are used to propose an on-line monitoring method for dust concentration proposed. Simulation and prediction are based on the operating data of a power plant 600 MW unit. The simulation results show that the prediction accuracy of the two models is both more than 96%, and the prediction error of BP model is less than 4%, while the error of SVM model is even less than 2.5%. On the whole, these two models are ideal for dust concentration monitoring, but the accuracy of the SVM model is relatively higher, and it has higher generalization ability, and is more stable. Therefore, it can be a kind of effective method for on-line monitoring.

文章引用: 赵一凡 , 付忠广 (2016) 基于BP神经网络和SVM的电厂粉尘浓度在线监测。 电力与能源进展, 4, 95-102. doi: 10.12677/AEPE.2016.44013

参考文献

[1] 唐娟. 粉尘浓度在线监测技术的现状及发展趋势[J]. 矿业安全与环保, 2009, 36(5): 69-71, 74.

[2] Yang, S.H., Wang, X.Z., Mcgreav, Y.C., et al. (1998) Soft-Sensor Based Predictive Control of Industrial Fluid Catalytic Cracking Processes. Institution of Chemical Engineerings Trans. IchemE (S0263-8762), 76, 499-508.

[3] 段中兴, 嵇启春. 催化剂粉尘浓度软测量建模研究与应用[J]. 系统仿真学报, 2008, 20(14): 3899-3902, 3906.

[4] 靳涛. 火电机组反向建模方法的研究[D]: [博士学士学位]. 北京: 华北电力大学(北京), 2011: 20-27.

[5] Matlab中文论坛. Matlab 神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2010: 12-21.

[6] 孙久春. 烟尘(粉尘)浓度在线监测仪的研制[D]: [硕士学士学位]. 沈阳: 东北大学, 2004.

[7] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10.

[8] 牛东晓, 谷志红, 邢棉, 王会青. 基于数据挖掘的SVM短期负荷预测方法研究[J]. 中国电机工程学报, 2006, 26(18): 6-12.

[9] 曹宏芳, 付忠广, 齐敏芳. PSO-SVM软测量方法在火电厂煤质发热量测量中的应用[J]. 热能动力工程, 2014(6): 731-735, 764-765.

[10] 蔡杰进, 马晓茜. 基于SVM的燃煤电站锅炉飞灰含碳量预测[J]. 燃烧科学与技术, 2006, 12(4): 312-317.

[11] 孙俊, 王艳, 金夏明, 毛罕平. 基于MSCPSO混合核SVM参数优化的生菜品质检测[J]. 农业机械学报, 2013, 44(9): 209-213, 218.

[12] 秦富童, 岳丽华, 万寿红. 应用BP神经网络的目标识别效果评估[J]. 计算机工程与应用, 2010, 46(5): 148-150, 156.

[13] 王恒, 花国然, 贾民平, 陈左亮. 基于LS-SVM和GM的球磨机料位动态软测量[J]. 热力发电, 2015(1): 77-81.

[14] 宫唤春. 基于模糊支持向量机的凝汽器故障诊断[J]. 热力发电, 2015(6): 98-101.

[15] 李勇, 王建君, 曹丽华. 汽轮机主蒸汽流量在线监测方法研究[J]. 热力发电, 2011, 40(4): 33-36, 40.

分享
Top