适用于金沙江流域降水模拟的WRF模式参数化方案研究
Study on Applicable Parameterization Schemes of WRF in the Jinshajiang River Basin

作者: 麦紫君 , 曾小凡 , 周建中 , 张海荣 :华中科技大学水电与数字化工程学院,湖北 武汉;

关键词: WRF模式参数化方案降水模拟金沙江流域WRF Parameterization Scheme Rainfall Simulation The Jinshajiang River Basin

摘要:
为确定适宜于金沙江流域降水模拟及预报的WRF模式参数化方案组合,针对流域四场典型降水过程,通过构造WRF模式中不同微物理过程、边界层和积云对流参数化方案组合,对WRF模式在金沙江流域的降水模拟进行了试验研究。基于TS评分和降水空间分布的比较,研究结果表明,优选参数化方案组合的WRF模式适用于金沙江流域降水模拟及预报,且微物理过程和边界层方案的选择对降水模拟影响较大,两者之间的适宜组合能达到较好的模拟效果,而积云对流参数化方案的影响相对较小。当微物理过程、边界层、积云对流参数化方案采用WRF Single-Moment 3-class、YSU、Kain-Fritsch (new Eta)组合或Ferrier (new Eta)、Mellor-Yamada-Janjic (Eta) TKE、Kain-Fritsch (new Eta)组合,WRF模式模拟降水与实测降水的量级及空间分布更为相符。

Abstract: To select applicable parameterization schemes combinations of WRF for rainfall simulation and forecast-ing in the Jinshajiang River basin, different combinations of microphysics, boundary layer and cumulus convection parameterization schemes and different nesting frameworks of WRF are evaluated in this re-search, by simulating four typical daily rainfall events in flood period. Based on TS and the spatial distri-butions, the results show that WRF with selective parameterization schemes is suitable for rainfall simu-lation in the Jinshajiang River basin. The impacts of microphysics and boundary layer schemes are relative bigger than those of cumulus convection scheme, and optimal combinations of microphysics and boundary layer schemes can achieve a better simulation. When microphysics, boundary layer and cumulus convection parameterization schemes apply combinations of WRF Single-Moment 3-class, YSU, Kain- Fritsch (new Eta) or combinations of Ferrier (new Eta), Mellor-Yamada-Janjic (Eta) TKE and Kain- Fritsch (new Eta), the magnitude and the spatial distributions of the simulated rainfall by WRF are more consistent with the observed rainfall.

文章引用: 麦紫君 , 曾小凡 , 周建中 , 张海荣 (2016) 适用于金沙江流域降水模拟的WRF模式参数化方案研究。 水资源研究, 5, 350-358. doi: 10.12677/JWRR.2016.54041

参考文献

[1] CAO, J., HU, J. M. and TAO, Y. An index for the interface between the Indian summer monsoon and the East Asian summer monsoon. Journal of Geophysical Research, 2012, 117(D18): 108.

[2] 王欢, 倪允琪. 2003年淮河汛期一次中尺度暴雨过程的诊断分析和数值模拟研究[J]. 气象学报, 2006, 64(6): 734-742. WANG Huan, NI Yunqi. Diagnostic analysis and numerical simulation of a mesoscale torrential rain system in the Huaihe valley during the rainy season in 2003. Acta Meteorologica Sinica, 2006, 64(6): 734-742. (in Chinese)

[3] 孙晶, 楼小凤, 胡志晋, 赵思雄. 梅雨期暴雨个例模拟及其中小尺度结构特征分析研究[J]. 大气科学, 2007, 31(1): l-18. SUN Jing, LOU Xiaofeng, HU Zhijin and ZHAO Sixiong. A numerical simulation on torrential rain during the Meiyu period and analysis of mesoscale and microscale structure of convective systems. Chinese Journal of Atmospheric Sciences, 2007, 31(1): l-18. (in Chinese)

[4] 马红云, 郭品文, 宋洁. 耦合不同陆面方案的WRF模式对2007年7月江淮强降水过程的模拟[J]. 大气科学, 2009, 33(3): 557-567. MA Hongyun, GUO Pinwen and SONG Jie. Simulation of “2007.7” heavy rainfall case in the Changjiang-Huaihe valley using the WRF model with different land surface schemes. Chinese Journal of Atmospheric Sciences, 2009, 33(3): 557-567. (in Chi-nese)

[5] 陈静. 物理过程参数化方案对中尺度暴雨数值模拟影响的研究[J]. 气象学报, 2003, 61(2): 203-218. CHEN Jing. The impact of physics parameterization schemes on mesoscale heavy rainfall simulation. Acta Meteorologica Sinica, 2003, 61(2): 203-218. (in Chinese)

[6] 伍红雨, 陈德辉, 徐国强. 不同物理过程参数化方案对贵州降水预报的敏感性试验[J]. 气象, 2007, 33(4): 23-28. WU Hongyu, CHEN Dehui and XU Guoqiang. Sensitive experiments of various parameterization schemes in different physical processes on Guizhou precipitation. Meteorological Monthly, 2007, 33(4): 23-28. (in Chinese)

[7] 徐国强, 梁旭东, 余晖, 黄丽萍, 薛纪善. 不同云降水方案对一次登陆台风的降水模拟[J]. 高原气象, 2007, 26(5): 891-900. XU Guoqiang, LIANG Xudong, YU Hui, HUANG Liping and XUE Jishan. Precipitation simulation using different cloud-pre- cipitation schemes for a landfall typhoon. Plateau Meteorology, 2007, 26(5): 891-900. (in Chinese)

[8] DEB, S. K., SRIVASTAVA, T. P. and KISHTAWAL, C. M. The WRF model performance for the simulation of heavy precipitating events over Ahmedabad during August 2006. Journal of Earth System Science, 2008, 117(5): 589-602.
http://dx.doi.org/10.1007/s12040-008-0055-5

[9] RAJU, P. V. S., JAYARAMAN, P. and MOHANTY, U. C. Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the bay of Bengal using WRF model. Meteorology and Atmospheric Physics, 2011, 113(3): 125-137.
http://dx.doi.org/10.1007/s00703-011-0151-y

[10] JASON, P., EVANS, M. E. and FEI, J. Evaluating the performance of a WRF physics ensemble over South-East Australia. Climate Dynamics, 2012, 39(6): 1241-1258.
http://dx.doi.org/10.1007/s00382-011-1244-5

[11] 何由, 阳坤, 姚檀栋, 何杰. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 2012, 31(5): 1183-1191. HE You, YANG Kun, YAO Tandong and HE Jie. Numerical simulation of a heavy precipitation in Qinghai-Xizang Plateau based on WRF model. Plateau Meteorology, 2012, 31(5): 1183-1191. (in Chinese)

[12] 程兴宏, 徐祥德, 丁国安, 李德平. MM5/WRF气象场模拟差异对CMAQ空气质量预报效果的影响[J]. 环境科学研究, 2009, 22(12): 1411-1419. CHENG Xinghong, XU Xiangde, DING Guoan and LI Deping. Differences in MM5 and WRF meteorological field simulations and impact on air quality forecasting by CMAQ model. Research of Environmental Sciences, 2009, 22(12): 1411-1419. (in Chinese)

[13] 廖镜彪, 王雪梅, 夏北成, 王体健, 王志铭. WRF模式中微物理和积云参数化方案的对比试验[J]. 热带气象学报, 2012, 28(4): 461-470. LIAO Jingbiao, WANG Xuemei, XIA Beicheng, WANG Tijian and WANG Zhiming. The effects of different physics and cu-mulus parameterization schemes in WRF on heavy rainfall simulation in PRD. Journal of Tropical Meteorology, 2012, 28(4): 461-470. (in Chinese)

[14] 邱贵强, 李华, 张宇, 罗斯琼, 王少影, 尚伦宇. 高寒草原地区边界层参数化方案的适用性评估[J]. 高原气象, 2013, 32(1): 46-55. QIU Guiqiang, LI Hua, ZHANG Yu, LUO Siqiong, WANG Shaoying and SHANG Lunyu. Applicability research of planetary boundary layer parameterization scheme in WRF model over the alpine grassland area. Plateau Meteorology, 2013, 32(1): 46- 55. (in Chinese)

[15] 周强, 李国平. 边界层参数化方案对高原低涡东移模拟的影响[J]. 高原气象, 2013, 32(2): 334-344. ZHOU Qiang, LI Guoping. Impact of the different boundary layer parameterization schemes on numerical simulation of plateau vortex moving eastward. Plateau Meteorology, 2013, 32(2): 334-344. (in Chinese)

[16] 王腾蛟, 张镭, 胡向军, 赵世强, 王瑾. WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J]. 高原气象, 2013, 32(5): 1261-1271. WANG Tengjiao, ZHANG Lei, HU Xiangjun, ZHAO Shiqiang and WANG Jin. Numerical simulation of summer boundary layer structure over undulating topography of loess plateau simulated by WRF model. Plateau Meteorology, 2013, 32(5): 1261-1271. (in Chinese)

[17] 王红丽, 廖留峰. WRF模式对西南地区干旱事件的模拟研究[J]. 贵州气象, 2015, 39(6): 1-5. WANG Hongli, LIAO Liufeng. WRF model’s simulation study on the drought in Southwest China. Journal of Guizhou Mete-orology, 2015, 39(6): 1-5. (in Chinese)

[18] 张瑛, 肖安, 马力, 王欢, 马中元, 周芳. WRF耦合4个陆面过程对 “6.19” 暴雨过程的模拟研究[J]. 气象, 2011, 37(9): 1060-1055. ZHANG Ying, XIAO An, MA Li, WANG Huan, MA Zhongyuan and ZHOU Fang. Simulation of the “19 June 2010” heavy rainfall event by using WRF coupled with four land surface processes. Meteorological Monthly, 2011, 37(9): 1060-1055. (in Chinese)

[19] 李安泰, 何宏让, 张云. WRF模式陆面参数扰动对一次西北暴雨影响的数值模拟[J]. 高原气象, 2012, 31(1): 65-75. LI Antai, HE Hongrang and ZHANG Yun. Numerical simulation of effect of WRF land surface parameter disturbance on a rainstorm in Northwest China. Plateau Meteorology, 2012, 31(1): 65-75. (in Chinese)

[20] 张大林. 各种非绝热物理过程在中尺度模式中的作用[J]. 大气科学, 1998, 22(4): 548-561. ZHANG Dalin. Roles of various diabatic physical processes in mesoscale models. Scientia Atmospherica Sinica, 1998, 22(4): 548-561. (in Chinese)

分享
Top