粉末活性炭对西氿湖突发氟喹诺酮类抗生素(NOR)污染去除研究
Powder Activated Carbon to the West Lake Gui Sudden Fluoroquinolone Antibiotics (NOR) Pollution Removal Research

作者: 牛明星 * , 吴 敏 , 吕药灵 , 肖倩倩 , 李恭霞 , 高乃云 :同济大学污染控制与资源化国家研究国家重点实验室,上海;同济大学长江水环境教育部重点实验室,上海;

关键词: 粉末活性炭氟喹诺酮类抗生素吸附等温式影响因素Powdered Activated Carbon Fluoroquinolone Antibiotics Adsorption Isotherm Influence Factor

摘要:
常规处理工艺对NOR突发污染去除能力有限,去除率最高为22%。因此本论文研究了投加粉末活性炭工艺对NOR的突发污染的去除效果,在对粉末活性炭的吸附容量试验中,Freundlich吸附等温式对粉末活性炭吸附去除NOR污染的拟合优于Langmuir吸附等温式拟合,且符合拟二级动力学方程。粉末活性炭吸附去除NOR有很好的效果,粉末活性炭投量相同时,随着污染物初始浓度的增加,粉末活性炭的吸附容量逐渐增大;当NOR浓度较高时,需要增加粉末活性炭的投加量才能明显提高NOR的去除率。

Abstract: Conventional treatment process on NOR sudden pollution removal ability is limited and the high-est removal rate of 22%. In the adsorption capacity test, the adsorption isotherm of powder activated carbon adsorption to remove pollution of NOR fitting is better than the Langmuir adsorption isotherm curve fitting and in line with the proposed secondary dynamics equation. Powder activated carbon adsorption removal of NOR has very good effect; powder activated carbon dosage phase at the same time, with the increase of the initial concentration of the pollutants, powder activated carbon adsorption capacity increased gradually. When NOR concentration is higher, it needs to increase the dosing quantity of active carbon powder to improve the removal rate of NOR.

文章引用: 牛明星 , 吴 敏 , 吕药灵 , 肖倩倩 , 李恭霞 , 高乃云 (2016) 粉末活性炭对西氿湖突发氟喹诺酮类抗生素(NOR)污染去除研究。 世界生态学, 5, 34-48. doi: 10.12677/IJE.2016.53005

参考文献

[1] Lipsky, B.A. and Baker, C.A. (1999) Fluoroquinolone Toxicity Profiles: A Review Focusing on Newer Agents. Clinical Infectious Diseases, 28, 352-364. http://dx.doi.org/10.1086/515104

[2] Domagala, J.M. (1994) Structure-Activity and Structure-Side-Effect Relationships for the Quinolone Antibacterials. Journal of Antimicrobial Chemotherapy, 34, 851.

[3] Radjenović, J., Petrović, M. and Barceló, D. (2009) Fate and Distribution of Pharmaceuticals in Wastewater and Sewage Sludge of the Conventional Activated Sludge (CAS) and Advanced Membrane Bioreactor (MBR) Treatment. Water Research, 43, 831-841. http://dx.doi.org/10.1016/j.watres.2008.11.043

[4] De Bel, E., et al. (2009) Influence of pH on the Sonolysis of Ciprofloxacin: Biodegradability, Ecotoxicity and Antibiotic Activity of Its Degradation Products. Chemosphere, 77, 291-295. http://dx.doi.org/10.1016/j.chemosphere.2009.07.033

[5] Carabineiro, S., et al. (2012) Comparison between Activated Carbon, Carbon Xerogel and Carbon Nanotubes for the Adsorption of the Antibiotic Ciprofloxacin. Catalysis Today, 186, 29-34. http://dx.doi.org/10.1016/j.cattod.2011.08.020

[6] Ahmed, M.J. and Theydan, S.K. (2014) Fluoroquinolones Antibiotics Adsorption onto Microporous Activated Carbon from Lignocellulosic Biomass by Microwave Pyrolysis. Journal of the Taiwan Institute of Chemical Engineers, 45, 219-226. http://dx.doi.org/10.1016/j.jtice.2013.05.014

[7] Carrasquillo, A.J., et al. (2008) Sorption of Ciprofloxacin and Oxytetracycline Zwitterions to Soils and Soil Minerals: Influence of Compound Structure. Environmental Science & Technology, 42, 7634-7642. http://dx.doi.org/10.1021/es801277y

[8] Kosutic, K., et al. (2007) Removal of Antibiotics from a Model Wastewater by RO/NF Membranes. Separation and Purification Technology, 53, 244-249. http://dx.doi.org/10.1016/j.seppur.2006.07.015

[9] Koyuncu, I., et al. (2008) Removal of Hormones and Antibiotics by Nanofiltration Membranes. Journal of Membrane Science, 309, 94-101. http://dx.doi.org/10.1016/j.memsci.2007.10.010

[10] 顾俊璟. 化学氧化和膜分离技术处理抗生素制药废水研究[D]: [硕士学位论文]. 天津: 天津大学, 2006.

[11] Sun, J., et al. (2012) Highly Efficient Degradation of Ofloxacin by UV/Oxone/Co2+ Oxidation Process. Environmental Science and Pollution Research, 19, 1536-1543. http://dx.doi.org/10.1007/s11356-011-0654-6

[12] Ternes, T.A., et al. (2003) Ozonation: A Tool for Removal of Pharmaceuticals, Contrast Media and Musk Fragrances from Wastewater? Water Research, 37, 1976-1982. http://dx.doi.org/10.1016/S0043-1354(02)00570-5

[13] 叶计朋, 等. 典型抗生素类药物在珠江三角洲水体中的污染特征[J]. 生态环境, 2007(2): 384-388.

[14] El Nemr, A., et al. (2008) Treatment of Wastewater Containing Toxic Chromium Using New Activated Carbon Developed from Date Palm Seed. Journal of Hazardous Materials, 152, 263-275. http://dx.doi.org/10.1016/j.jhazmat.2007.06.091

[15] Kumar, A., Prasad, B. and Mishra, I.M. (2008) Adsorptive Removal of Acrylonitrile by Commercial Grade Activated Carbon: Kinetics, Equilibrium and Thermodynamics. Journal of Hazardous Materials, 152, 589-600. http://dx.doi.org/10.1016/j.jhazmat.2007.07.048

[16] Crini, G., et al. (2007) Removal of CI Basic Green 4 (Malachite Green) from Aqueous Solutions by Adsorption Using Cyclodextrin-Based Adsorbent: Kinetic and Equilibrium Studies. Separation and Purification Technology, 53, 97-110. http://dx.doi.org/10.1016/j.seppur.2006.06.018

[17] 沈娜. 粉末活性炭应急处理原水农药类内分泌干扰物试验研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2011.

[18] Kumar, A., Prasad, B. and Mishra, I.M. (2010) Isotherm and Kinetics Study for Acrylic Acid Removal Using Powdered Activated Carbon. Journal of Hazardous Materials, 176, 774-783. http://dx.doi.org/10.1016/j.jhazmat.2009.11.102

[19] Srivastava, V.C., et al. (2006) Adsorptive Removal of Phenol by Bagasse Fly Ash and Activated Carbon: Equilibrium, Kinetics and Thermodynamics. Colloids and Surfaces A—Physicochemical and Engineering Aspects, 272, 89-104.

分享
Top