﻿ 不变流形演进方向对非双曲型非线性时间序列重影算法的影响分析

# 不变流形演进方向对非双曲型非线性时间序列重影算法的影响分析The Effects of Homoclinic Tangencies and Homoclinic Intersectionons on Shadowing Algorithm for Series of Non-Hyperbolic Nonlinear Systems

Abstract: The presence of homoclinic tangencies and homoclinic intersections makes it very difficult, sometimes even impossible, to shadow the trajectory of the non-hyperbolic nonlinear system. Different from former methods, this paper analyzed the effects of the homoclinic tangencies on the algorithm, and proposed methods that can decrease, or even avoid the effects. Different from those methods which take it for granted that the failure of denoising algorithms is related with the homoclinic tangencies only, experiments in this paper demonstrate a quantitative correlation between the minimal distance of homoclinic intersections and the standard variance of noise. Thus the probability that the algorithm converges to the true trajectory could be boosted efficiently, and without any doubts, this strategy would be a heuristic approach to other similar methods.

[1] Voss, H.U., Timmer, J. and Kurths, J. (2004) Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements. International Journal of Bifurcation and Chaos, 14, 1905-1933. http://dx.doi.org/10.1142/S0218127404010345

[2] 毛少杰, 邓克波, 王珩, 等. 网络化和服务化C4ISR系统复杂性[J]. 指挥信息系统与技术, 2012, 3(4): 1-6.

[3] Maybhate, A. and Amritkar, R.E. (2002) Estimation of Initial Conditions from a Scalar Time-Series. http://arxiv.org/abs/nlin/0002024

[4] 张政伟, 樊养余, 汪凯斌. 由单变量受扰观测序列估计混沌系统敏感参数[J]. 系统仿真学报, 2007, 19(14): 3318-3320.

[5] Schreiber, T. (1993) Extremely Simple Nonlinear Noise Reduction Method. Physical Review E, 47, 2401-2404. http://dx.doi.org/10.1103/PhysRevE.47.2401

[6] Davies, M. (1994) Noise Reduction Schemes for Chaotic Time Series. Physical D, 79, 174-192. http://dx.doi.org/10.1016/S0167-2789(05)80005-3

[7] 张政伟. 复杂背景条件下的信号检测与估计技术研究[D]: [博士学位论文]. 西安: 西北工业大学, 2008: 54-57.

[8] Davies, M. (1992) Noise Reduction by Gradient Descent. International Journal of Bifurcation and Chaos, 3, 113-118. http://dx.doi.org/10.1142/S0218127493000076

[9] David, R. and Kevin, J. (2002) Convergence Properties of Gradient Descent Noise Reduction. Physical D, 165, 26-47. http://dx.doi.org/10.1016/S0167-2789(02)00376-7

[10] Cao, L.Y. (1997) Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series. Physical D, 10, 43-50. http://dx.doi.org/10.1016/S0167-2789(97)00118-8

[11] Kim, H.S., Eykholt, R. and Salas, J.D. (1999) Nonlinear Dynamics, Delay Times, and Embedding Windows. Physica D, 127, 48-60. http://dx.doi.org/10.1016/S0167-2789(98)00240-1

[12] 张政伟, 樊养余, 王凤琴. 一种快速稳健的非双曲型非线性时间序列去噪算法[J]. 航空学报, 2009, 30(1): 136-142.

[13] 张政伟. 模型未知的非双曲型非线性序列去噪算法. 计算机工程, 2011, 37(15): 6-9.

[14] Grebogi, C., Hammel, S.M. and Yorke, J.A. (1987) Do Numerical Orbits of Chaotic Dynamical Process Represent True Orbits. Journal of Complexity, 3, 136-145. http://dx.doi.org/10.1016/0885-064X(87)90024-0

[15] Walker, D.M. and Mees, A.I. (1997) Noise Reduction of Chaotic Systems by Kalman Filtering and by Shadowing. International Journal of Bifurcation and Chaos, 7, 769-779. http://dx.doi.org/10.1142/S021812749700056X

Top