不同沉积环境原油轻烃单体烃碳同位素组成特征
Characteristics of Carbon Isotope Composition of Light Hydrocarbon Monomer Hydrocarbon of Crude Oils in Different Sedimentary Environments

作者: 李洪波 , 张 敏 :油气资源与勘探技术教育部重点实验室(长江大学),湖北 武汉;长江大学资源与环境学院,湖北 武汉 ;

关键词: 曲流河沉积微相复合砂体剩余油挖潜Meandering river sedimentary microfacies compound sand body remaining oil

摘要:
对塔里木盆地与吐哈盆地不同沉积环境原油进行了全烃色谱–同位素质谱检测分析,获得了轻烃单体烃碳同位素组成,据此剖析了其地球化学特征。研究表明,支链烷烃与环己烷和甲基环己烷的碳同位素在海相油、湖相油与煤成油中呈现显著差异性。由于不同盆地有机质特征不同,吐哈盆地煤成油在上述化合物中的碳同位素值(δ13C)小于塔里木盆地的湖相油与煤成油。以mCYC6的δ13C值作为海、陆相原油的典型区分标志,大于−25‰为陆相油,小于−25‰为海相油。针对塔里木盆地而言,陆相原油中mCYC6的δ13C大于−20‰可作为煤成油的鉴别标志,位于−22‰~−20‰之间可作为湖相油鉴别标志。

Abstract: Large amounts of crude oil from different sedimentary environments in Tarim and Tuha Basin were analyzed by GC-IRMS. The composition of light hydrocarbon and monomer hydrocarbon isotope was obtained, by which its chemical characteristics were analyzed. Study indicates that the carbon isotopic compositions of branched alkanes and cyclohexane and methyl cyclohexane show significant difference in marine oil, lacustrine oil and coal oil. Because of particularity of organic matter in Tuha Basin, the δ13C of branched alkanes and cyclohexane compounds in coal-formed oils from Tuha Basin was less than that in lacustrine oil and coal-formed oil from Tarim Basin. Compound-specific carbon isotope composition of mCYC6 was established to distinguish between marine oil and continental oil.   is greater than −25‰ in continental oil and less than −25‰ in marine oil. In Tarim Basin, the δ13C value of mCYC6 in terrigenous crude oils that is higher than −20‰ can be taken as the marker for identifying coal derived oil, while the δ13C value of mCYC6 between −22‰ - −20‰ can used as the marker for identifying lacustrine oil.

文章引用: 李洪波 , 张 敏 (2016) 不同沉积环境原油轻烃单体烃碳同位素组成特征。 石油天然气学报, 38, 17-22. doi: 10.12677/JOGT.2016.383020

参考文献

[1] 张敏, 张俊, 张春明. 塔里木盆地原油轻烃地球化学特征[J]. 地球化学, 1999, 28(2): 191-196.

[2] 朱扬明, 苏爱国, 梁狄刚, 等. 柴达木盆地北缘南八仙油气藏的蒸发分馏作用[J]. 石油学报, 2003, 24(4): 31-35.

[3] 张文正, 裴戈, 关德师, 等. 中国几个盆地原油轻烃单体和正构烷烃系列分子碳同位素研究[J]. 地质论评, 1993, 39(1): 79-87.

[4] Harris, S.A., Whiticar, M.J. and Fowler, M.G. (2003) Classification of Duvernay Sourced Oils from Central and Southern Alberta Using Compound Specific Isotope Correlation (CSIC). Bulletin of Canadian Petroleum Geology, 51, 99-125.
http://dx.doi.org/10.2113/51.2.99

[5] 段毅, 赵阳, 姚泾利, 等. 轻烃地球化学研究进展及发展趋势[J]. 天然气地球科学, 2014, 25(12): 1875-1887.

[6] 张水昌, 梁狄刚, 张宝民, 等. 塔里木盆地海相油气的生成[M]. 北京: 石油工业出版社, 2004.

[7] 程克明. 吐哈盆地油气生成[M]. 北京: 石油工业出版社, 1994.

[8] Whiticar, M.J. and Snowdon, L.R. (1999) Geochemical Characterization of Selected Western Canada Oils by C5-C8 Compound Specific Isotope Correlation (CSIC). Organic Geochemistry, 30, 1127-1161.
http://dx.doi.org/10.1016/S0146-6380(99)00093-5

[9] 张文正, 裴戈, 关德师, 等. 烃源岩热解油的轻烃单体烃和正构烷烃分子碳同位素特征[J]. 石油学报, 1993, 14(1): 42-50.

[10] 胡惕麟, 戈葆雄, 张义纲, 等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用[J]. 石油实验地质, 1990, 12(4): 375-393.

[11] 张敏, 林壬子, 梅博文. 油藏地球化学——塔里木盆地库车含油气系统研究[M]. 重庆: 重庆大学出版社, 1997.

[12] 胡国艺, 李剑, 李谨, 等. 判识天然气成因的轻烃指标探讨[J]. 中国科学(地球科学), 2007, 37(SII): 111-117.

分享
Top