电沉积法制备树枝状纳米银及其电催化性能研究
Study on Preparation and Electrocatalytic Properties of Dendritic Nano Silver Prepared by Electrodeposition

作者: 苗智颖 , 邵学广 :南开大学药物化学生物学国家重点实验室,天津; 秦 霞 :曲阜师范大学地理与旅游学院,山东 日照; 陈 强 :南开大学生物活性材料教育部重点实验室,天津;

关键词: 电沉积法树枝状纳米银过氧化氢Electrodeposition Method Dendritic Nanostructure Silver Hydrogen Peroxide

摘要:
采用电沉积法室温条件下在浸入AgNO3溶液的金箔表面制备了树枝状纳米银材料,施加电压为−0.3 V、电沉积时间为60 s、电解液含KNO3 (0.1 M)和AgNO3 (20 mM),所制备的纳米材料利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射分析(XRD)、能量色散X射线光谱(EDX)等方法进行表征,根据表征结果分析了树枝状纳米银的晶体结构和形成机制;与未作任何修饰的裸Au电极相比,修饰了银纳米材料的Au电极对H2O2有明显的响应,在−0.35 V处出现明显的还原峰,证明树枝状纳米银对H2O2的还原有良好催化作用。

Abstract: Dendritic nanostructure silver material was synthesized on the surface of gold foil under the condition of being immersed in AgNO3 solution by electro deposition method at room temperature, with applied voltage (−0.3 V), electrodeposition time (60 s), electrolyte containing KNO3 (0.1 M) and AgNO3 (20 mm). The prepared materials were characterized by SEM, TEM, XRD, EDX methods. The dendritic nano silver crystal structure and formation mechanism were analysed according to the characterization results. Compared with bare Au electrodes without any modification, the Au electrode modified with silver nano material has an obvious reduction peak of hydrogen peroxide at −0.35 V. It is proved that the dendritic nano silver has a good catalytic effect on the reduction of hydrogen peroxide.

文章引用: 苗智颖 , 秦 霞 , 邵学广 , 陈 强 (2016) 电沉积法制备树枝状纳米银及其电催化性能研究。 纳米技术, 6, 43-51. doi: 10.12677/NAT.2016.63006

参考文献

[1] Xu, C., Wang, B. and Sun, S. (2009) Dumbbell-Like Au-Fe3o4 Nanoparticles for Target-Specific Platin Delivery. Journal of the American Chemical Society, 131, 4216-4217.
http://dx.doi.org/10.1021/ja900790v

[2] Cecconello, A., Lu, C. H., Elbaz, J. and Willner, I. (2013) Au Nanoparticle/DNA Rotaxane Hybrid Nanostructures Exhibiting Switchable Fluorescence Properties. Nano Letters, 13, 6275-6280.
http://dx.doi.org/10.1021/nl403884w

[3] Clayton, D.A., Benoist, D.M., Zhu, Y. and Pan, S. (2010) Photoluminescence and Spectroelectrochemistry of Single Ag Nanowires. ACS Nano, 4, 2363-2373.
http://dx.doi.org/10.1021/nn100102k

[4] Qian, H.-S., Antonietti, M. and Yu, S.-H. (2007) Hybrid “Golden Fleece”: Synthesis and Catalytic Performance of Uniform Carbon Nanofibers and Silica Nanotubes Embedded with a High Population of Noble-Metal Nanoparticles. Advanced Functional Materials, 17, 637-643.
http://dx.doi.org/10.1002/adfm.200600657

[5] Rosi, N.L. and Mirkin, C.A. (2005) Nanostructures in Biodiagnostics. Expert Review of Molecular Diagnostics, 105, 1547-1562.
http://dx.doi.org/10.1002/chin.200528279

[6] Wang, X., Zhuang, J., Peng, Q. and Li, Y. (2005) A General Strategy for Nanocrystal Synthesis. Nature, 437, 121-124.
http://dx.doi.org/10.1038/nature03968

[7] Ge, J., Lee, H., He, L., Kim, J., Lu, Z., Kim, H., et al. (2009) Magnetochromatic Microspheres: Rotating Photonic Crystals. Journal of the American Chemical Society, 131, 15687-15694.
http://dx.doi.org/10.1021/ja903626h

[8] Qiu, R., Zhang, X.L, Qiao, R., Li, Y., Kim, Y.I. and Kang, Y.S. (2007) CuNi Dendritic Material:  Synthesis, Mechanism Discussion, and Application as Glucose Sensor. Chemistry of Materials, 19, 4174-4180.
http://dx.doi.org/10.1021/cm070638a

[9] Sun, X. and Hagner, M. (2007) Novel Preparation of Snowflake-Like Dendritic Nanostructures of Ag or Au at Room Temperature via a Wet-Chemical Route. Langmuir, 23, 9147-9150.
http://dx.doi.org/10.1021/la701519x

[10] Fang, J.X., You, H.J., Kong, P., Yi, Y., Song, X.P. and Ding, B.J. (2007) Dendritic Silver Nanostructure Growth and Evolution in Replacement Reaction. Crystal Growth & Design, 7, 864-867.
http://dx.doi.org/10.1021/cg0604879

[11] Xiao, J.P., Xie, Y., Tang, R., Chen, M. and Tian, X.B. (2001) Novel Ultrasonically Assisted Templated Synthesis of Palladium and Silver Dendritic Nanostructures. Advanced Materials, 13, 1887-1891.
http://dx.doi.org/10.1002/1521-4095(200112)13:24<1887::AID-ADMA1887>3.0.CO;2-2

[12] Gao, X. and Jiang, L. (2004) Biophysics: Water-Repellent Legs of Water Striders. Nature, 432, 36.
http://dx.doi.org/10.1038/432036a

[13] Yang, Q., Wang, F., Tang, K., Wang, C., Chen, Z. and Qian, Y. (2003) The Formation of Fractal Ag Nanocrystallites via γ-Irradiation Route in Isopropyl Alcohol. Materials Chemistry & Physics, 78, 495-500.
http://dx.doi.org/10.1016/S0254-0584(02)00379-6

[14] Zhou, Y., Yu, S.H., Wang, C.Y., Li, X.G., Zhu, Y.R. and Chen, Z.Y. (1999) A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites. Advanced Materials, 11, 850-852.
http://dx.doi.org/10.1002/(SICI)1521-4095(199907)11:10<850::AID-ADMA850>3.0.CO;2-Z

[15] Wei, G.D., Nan, C.W., Deng, Y. and Lin, Y.H. (2003) Self-Organized Synthesis of Silver Chainlike and Dendritic Nanostructures via a Solvothermal Method. Chemistry of Materials, 15, 4436-4441.
http://dx.doi.org/10.1021/cm034628v

[16] Wen, X., Xie, Y.-T., Cheung, M.W.M., Cheung, K.Y., et al. (2006) Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications. Langmuir the ACS Journal of Surfaces & Colloids, 22, 4836-4842.
http://dx.doi.org/10.1021/la060267x

[17] Han, Y., Liu, S., Han, M., Bao, J. and Dai, Z. (2009) Fabrication of Hierarchical Nanostructure of Silver via a Surfactant-Free Mixed Solvents Route. Crystal Growth & Design, 9, 3941-3947.
http://dx.doi.org/10.1021/cg900066z

[18] He, Y., Wu, X., Lu, G. and Shi, G. (2006) A Facile Route to Silver Nanosheets. Materials Chemistry & Physics, 98, 178-182.
http://dx.doi.org/10.1016/j.matchemphys.2005.09.008

[19] Caswell, K.K., Bender, C.M. and Murphy, C.J. (2003) Seedless, Surfactantless Wet Chemical Synthesis of Silver Nanowires. Nano Letters, 3, 667-669.
http://dx.doi.org/10.1021/nl0341178

[20] Huang, S., Ma, H., Zhang, X., Yong, F., Feng, X., Pan, W., et al. (2005) Electrochemical Synthesis of Gold Nanocrystals and Their 1D and 2D Organization. Journal of Physical Chemistry B, 109, 19823-19830.
http://dx.doi.org/10.1021/jp052863q

[21] Qiu, R., Cha, H.G., Hui, B.N., Shim, Y.B., Zhang, X.L., Qiao, R., et al. (2009) Preparation of Dendritic Copper Nanostructures and Their Characterization for Electroreduction. Journal of Physical Chemistry C, 113, 15891-15896.
http://dx.doi.org/10.1021/jp904222b

[22] Duan, G., Cai, W., Luo, Y., Li, Z. and Li, Y. (2006) Electrochemically Induced Flowerlike Gold Nanoarchitectures and Their Strong Surface-Enhanced Raman Scattering Effect. Applied Physics Letters, 89, Article ID: 211905
http://dx.doi.org/10.1063/1.2392822

[23] Qiu, T., Wu, X.L., Mei, Y.F., Chu, P.K. and Siu, G.G. (2005) Self-Organized Synthesis of Silver Dendritic Nanostructures via an Electroless Metal Deposition Method. Applied Physics A, 81, 669-671.
http://dx.doi.org/10.1007/s00339-005-3263-8

[24] Kaniyankandy, S., Nuwad, J., Thinaharan, C., Dey, G.K. and Pillai, C.G.S. (2007) Electrodeposition of Silver Nanodendrites. Nanotechnology, 18, 4879-4884.
http://dx.doi.org/10.1088/0957-4484/18/12/125610

[25] Qin, X., Wang, H., Wang, X., Miao, Z., Fang, Y., Chen, Q., et al. (2011) Synthesis of Dendritic Silver Nanostructures and Their Application in Hydrogen Peroxide Electroreduction. Electrochimica Acta, 56, 3170-3174.
http://dx.doi.org/10.1016/j.electacta.2011.01.058

[26] Qin, X., Miao, Z., Fang, Y., Zhang, D., Ma, J., Zhang, L., et al. (2012) Preparation of Dendritic Nanostructures of Silver and Their Characterization for Electroreduction. Langmuir the ACS Journal of Surfaces & Colloids, 28, 5218-5226.
http://dx.doi.org/10.1021/la300311v

[27] Alivisatos, A.P. (2000) Naturally Aligned Nanocrystals. Science, 289, 736-737.
http://dx.doi.org/10.1126/science.289.5480.736

分享
Top