统计降尺度方法的研究进展与挑战
Progress and Challenge in Statistically Downscaling Climate Model Outputs

作者: 陈 杰 , 郭生练 , 陈 华 :武汉大学水资源与水电工程科学国家重点实验室,湖北 武汉; 许崇育 :武汉大学水资源与水电工程科学国家重点实验室,湖北 武汉;挪威奥斯陆大学地学系,奥斯陆,挪威;

关键词: 统计降尺度气候模式偏差校正随机天气发生器进展与挑战Statistical Downscaling Climate Model Bias Correction Stochastic Weather Generator Progress and Challenge

摘要:
统计降尺度是指通过建立大尺度气候模式输出变量与小尺度气象要素之间的统计关系,产生站点或流域尺度气候变化情景的过程,是开展站点或流域尺度气候变化影响评估的重要技术环节。本文在总结统计降尺度方法国内外最新研究进展的基础上,综述了理想预报、模型输出估计以及随机天气发生器三类主要的统计降尺度方法,分析了各方法的优点与不足;阐述了统计降尺度方法发展所面临的问题与挑战,并提出针对各问题的解决思路和方法,以期为统计降尺度的发展指明方向,为气候变化影响评估提供参考。

Abstract: Statistical downscaling is a process to build up statistical relationships between large-scale (usually 1˚-3˚ on latitude and longitude) climate model outputs and point/watershed-scale meteorological variables. It is an important technique to conduct climate change impact assessment for a specific site or a watershed. This paper systematically reviewed the recent advances in three fields related to statistical downscaling methods: perfect prognosis, model output statistics, and stochastic weather generator. Merits and draw-backs associated with each downscaling method were summarized. In addition, the challenges in pro-gressing statistical downscaling methods were stated, as well as the potential solutions. The contribution of this review is aimed at pointing out the direction of developing statistical downscaling methods and providing clues for climate change impact studies.

文章引用: 陈 杰 , 许崇育 , 郭生练 , 陈 华 (2016) 统计降尺度方法的研究进展与挑战。 水资源研究, 5, 299-313. doi: 10.12677/JWRR.2016.54037

参考文献

[1] 刘昌明, 刘文彬, 傅国斌, 等. 气候影响评价中统计降尺度若干问题的探讨[J]. 水科学进展, 2012, 23(3): 427-437. LIU Changming, LIU Wenbin, FU Guobin, et al. A discussion of some aspects of statistical downscaling in climate impacts assessment. Advances in water science, 2012, 23(03): 427-437. (in Chinese)

[2] DICKINSON, R. E., ERRICO, R. M., GIORGI, F., et al. A regional climate model for the western United-States. Climatic Change, 1989, 15(3): 383-422.
http://dx.doi.org/10.1007/BF00240465

[3] GIORGI, F. Simulation of regional climate using a limited area model nested in a general-circulation model. Journal of Climate, 1990, 3(9): 941-963.
http://dx.doi.org/10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2

[4] YANG, W., ANDREASSON, J., GRAHAM, L. P., et al. Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrology Research, 2010, 41(3-4): 211-229.
http://dx.doi.org/10.2166/nh.2010.004

[5] MURPHY, J. An evaluation of statistical and dynamical techniques for downscaling local climate. Journal of Climate, 1999, 12(8): 2256-2284.
http://dx.doi.org/10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2

[6] FOWLER, H. J., EKSTROM, M., BLENKINSOP, S., et al. Estimating change in extreme European precipitation using a multimodel ensemble. Journal of Geo-physical Research-Atmospheres, 2007, 112(D18).
http://dx.doi.org/10.1029/2007JD008619

[7] EHRET, U., ZEHE, E., WULFMEYER, V., et al. Should we apply bias correction to global and regional climate model data? Hydrology and Earth System Sciences, 2012, 16(9): 3391-3404.
http://dx.doi.org/10.5194/hess-16-3391-2012

[8] TEUTSCHBEIN, C., SEIBERT, J. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 2012, 456: 12-29.
http://dx.doi.org/10.1016/j.jhydrol.2012.05.052

[9] 陈喜, 陈永勤. 日雨量随机解集模式研究[J]. 水利学报, 2001(4): 47-52. CHEN Xi, CHEN Yongqin. Downscaling of daily precipitation using a stochastic weather generator. ShuiliXuebao, 2001(4): 47-52. (in Chinese)

[10] 范丽军, 符淙斌, 陈德亮. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005(3): 320-329. FAN Lijun, FU Congbin and CHEN Deliang. Review on creating future climate change scenarios by statistical downscaling techniques. Advances in Earth Science, 2005(3): 320-329. (in Chinese)

[11] WILBY, R. L., DAWSON, C. W. and BARROW, E. M. SDSM—A decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 2002, 17(2): 147-159.

[12] CHU, J. T., XIA, J., XU, C. Y., et al. Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theoretical and Applied Climatology, 2010, 99(1-2): 149-161.

[13] 刘兆飞, 徐宗学. 基于统计降尺度的渭河流域未来日极端气温变化趋势分析[J]. 资源科学, 2009, 31(9): 1573-1580. LIU Zhaofei, XU Zongxue. Trends of daily extreme air temperature in the Wei River Basin in the future. Resources Science, 2009, 31(9): 1573-1580. (in Chinese)

[14] 刘永和, 郭维栋, 冯锦明, 等. 气象资料的统计降尺度方法综述[J]. 地球科学进展, 2011, 26(8): 837-847. LIU Yonghe, GUO Weidong, FENG Jinming, et al. A summary of methods for statistical downscaling of meteorological data. Advance in Earth Science, 2011, 26(8): 837-847. (in Chinese)

[15] 成爱芳, 冯起, 张健恺, 等. 未来气候情景下气候变化响应过程研究综述[J]. 地理科学, 2015(1): 84-90. CHENG Aifang, FENG Qi, ZHANG Jiankai, et al. A review of climate change scenario for impacts process study. Scientia Geographica Sinica, 2015(1): 84-90. (in Chinese)

[16] XU, C. Y. From GCMs to river flow: A review of downscaling methods and hydrologic modelling approaches. Progress in Physical Geography, 1999, 23(2): 229-249.
http://dx.doi.org/10.1177/030913339902300204

[17] GOYAL, M. K., OJHA, C. S. P. Evaluation of linear regression methods as downscaling tools in temperature projections over the Pichola Lake Basin in India. Hydrological Processes, 2011, 25(9): 1453-1465.
http://dx.doi.org/10.1002/hyp.7911

[18] 陈华, 郭靖, 熊伟, 等. 应用光滑支持向量机预测汉江流域降水变化[J]. 长江科学院院报, 2008, 25(6): 28-32. CHEN Hua, GUO Jing, XIONG Wei, et al. Application of smooth support vector machine to predict precipitation change in Hanjiang River Basin. Journal of Yangtze River Scientific Research Institute, 2008, 25(6): 28-32. (in Chinese)

[19] 侯雨坤, 陈华, 黄逍, 等. 基于 LS-SVM 的改进统计降尺度方法[J]. 水资源研究, 2014, 3(1): 72-77. HOU Yukun, CHEN Hua, HUANF Xiao, et al. A statistical downscaling method based on least squares support vector machines. Journal of Water Resources Research, 2014, 3(1): 72-77. (in Chinese)

[20] SCHOOF, J. T., PRYOR, S. C. Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks. International Journal of Climatology, 2001, 21(7): 773-790.
http://dx.doi.org/10.1002/joc.655

[21] CHEN, J., BRISSETTE, F. P. and LECONTE, R. Coupling statistical and dynamical methods for spatial downscaling of precipitation. Climatic Change, 2012, 114(3-4): 509-526.
http://dx.doi.org/10.1007/s10584-012-0452-2

[22] WILKS, D. S. Use of stochastic weather generator for precipitation downscaling. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1(6): 898-907.
http://dx.doi.org/10.1002/wcc.85

[23] ZHANG, X. C. Spatial downscaling of global climate model output for site-specific assessment of crop production and soil erosion. Agricultural and Forest Meteorology, 2005, 135(1-4): 215-229.
http://dx.doi.org/10.1016/j.agrformet.2005.11.016

[24] QIAN, B. D., GAMEDA, S., DE JONG, R., et al. Comparing scenarios of Canadian daily climate extremes derived using a weather generator. Climate Research, 2010, 41(2): 131-149.
http://dx.doi.org/10.3354/cr00845

[25] KILSBY, C. G., JONES, P. D., BURTON, A., et al. A daily weather generator for use in climate change studies. Environmental Modelling & Software, 2007, 22(12): 1705-1719.
http://dx.doi.org/10.1016/j.envsoft.2007.02.005

[26] MARAUN, D., WETTERHALL, F., IRESON, A. M., et al. Precipi-tation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 2010, 48(3): 633-650.
http://dx.doi.org/10.1029/2009RG000314

[27] WILBY, R. L., WIGLEY, T. M. L. Precipitation predictors for downscaling: Observed and general circulation model relationships. International Journal of Climatology, 2000, 20(6): 641-661.
http://dx.doi.org/10.1002/(SICI)1097-0088(200005)20:6<641::AID-JOC501>3.0.CO;2-1

[28] CHEN, J., BRISSETTE, F. P. and LECONTE, R. Assessing regression-based statistical approaches for downscaling precipitation over North America. Hydrological Processes, 2014, 28(9): 3482-3504.
http://dx.doi.org/10.1002/hyp.9889

[29] BUSUIOC, A., TOMOZEIU, R. and CACCIAMANI, C. Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. International Journal of Climatology, 2008, 28(4): 449- 464.
http://dx.doi.org/10.1002/joc.1547

[30] WILKS, D. S. Statistical methods in the atmospheric sciences. 3rd Edition, Aca-demic Press: New York, 2005.

[31] VIMONT, D. J., BATTISTI, D. S. and NAYLOR, R. L. Downscaling Indonesian precipi-tation using large-scale meteorological fields. International Journal of Climatology, 2010, 30(11): 1706-1722.
http://dx.doi.org/10.1002/joc.2010

[32] CHU, J. L., KANG, H. W., TAM, C. Y., et al. Seasonal forecast for local precipi-tation over northern Taiwan using statistical downscaling. Journal of Geophysical Research-Atmospheres, 2008, 113(D12): 1113-1126.
http://dx.doi.org/10.1029/2007JD009424

[33] WILBY, R. L., WIGLEY, T. M. L., CONWAY, D., et al. Statistical down-scaling of general circulation model output: A comparison of methods. Water Resources Research, 1998, 34(11): 2995-3008.
http://dx.doi.org/10.1029/98WR02577

[34] CHEN, H., GUO, J., XIONG, W., et al. Downscaling GCMs using the smooth support vector machine method to predict daily precipitation in the Hanjiang Basin. Advances in Atmospheric Sciences, 2010, 27(2): 274-284.
http://dx.doi.org/10.1007/s00376-009-8071-1

[35] WILKS, D. S. Statistical methods in the atmospheric science. Academic Press: California, 1995.

[36] WOOD, A. W., LEUNG, L. R., SRIDHAR, V., et al. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 2004, 62(1-3): 189-216.
http://dx.doi.org/10.1023/B:CLIM.0000013685.99609.9e

[37] INES, A. V. M., HANSEN, J. W. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and Forest Meteorology, 2006, 138(1-4): 44-53.
http://dx.doi.org/10.1016/j.agrformet.2006.03.009

[38] SHARMA, D., DAS GUPTA, A. and BABEL, M. S. Spatial dis-aggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand. Hydrology and Earth System Sciences, 2007, 11(4): 1373-1390.
http://dx.doi.org/10.5194/hess-11-1373-2007

[39] CHRISTENSEN, J. H., BOBERG, F., CHRISTENSEN, O. B., et al. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophysical Research Letters, 2008, 35(20): 229-237.
http://dx.doi.org/10.1029/2008GL035694

[40] MPELASOKA, F. S., CHIEW, F. H. S. Influence of rainfall scenario con-struction methods on runoff projections. Journal of Hydrometeorology, 2009, 10(5): 1168-1183.
http://dx.doi.org/10.1175/2009JHM1045.1

[41] PIANI, C., HAERTER, J. O. and COPPOLA, E. Statistical bias correction for daily precipitation in regional climate models over Europe. Theoretical and Applied Climatology, 2010, 99(1-2): 187-192.
http://dx.doi.org/10.1007/s00704-009-0134-9

[42] THEMESSL, M. J., GOBIET, A. and HEINRICH, G. Em-pirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 2012, 112(2): 449-468.
http://dx.doi.org/10.1007/s10584-011-0224-4

[43] CHEN, J., BRISSETTE, F. P., CHAUMONT, D., et al. Performance and uncertainty evaluation of empirical downscaling methods in quantifying the climate change impacts on hydrology over two North American river basins. Journal of Hydrology, 2013, 479(5): 200-214.
http://dx.doi.org/10.1016/j.jhydrol.2012.11.062

[44] CHEN, J., BRISSETTE, F. P., CHAUMONT, D., et al. Finding ap-propriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Re-sources Research, 2013, 49(7): 4187-4205.
http://dx.doi.org/10.1002/wrcr.20331

[45] TEUTSCHBEIN, C., SEIBERT, J. Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrology and Earth System Sciences, 2013, 17(12): 5061-5077.
http://dx.doi.org/10.5194/hess-17-5061-2013

[46] CHEN, J., ST-DENIS, B. G., BRISSETTE, F., et al. Using natural va-riability as a baseline to evaluate the performance of bias correction methods in hydrological climate change impact studies. Journal of Hydrometeorology, 2016.
http://dx.doi.org/10.1175/JHM-D-15-0099.1

[47] SCHMIDLI, J., FREI, C. and VIDALE, P. L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. International Journal of Climatology, 2006, 26(5): 679-689.
http://dx.doi.org/10.1002/joc.1287

[48] CHEN, J., BRISSETTE, F. P. and LECONTE, R. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology, 2011, 401(3-4): 190-202.
http://dx.doi.org/10.1016/j.jhydrol.2011.02.020

[49] LI, C., SINHA, E., HORTON, D. E., et al. Joint bias correction of temperature and precipitation in climate model simulations. Journal of Geophysical Research—Atmospheres, 2014, 119(23): 13153-13162.
http://dx.doi.org/10.1002/2014JD022514

[50] CHEN, J., ZHANG, X. C. J. and BRISSETTE, F. P. As-sessing scale effects for statistically downscaling precipitation with GPCC model. International Journal of Climatology, 2014, 34(3): 708-727.
http://dx.doi.org/10.1002/joc.3717

[51] LI, Z., BRISSETTE, F. and CHEN, J. Finding the most appropriate precipitation probability distribution for stochastic weather generation and hydrological modelling in Nordic watersheds. Hydrological Processes, 2013, 27(25): 3718-3729.
http://dx.doi.org/10.1002/hyp.9499

[52] RICHARDSON, C. W. Stochastic simulation of daily precipitation, temperature, and solar-radiation. Water Resources Research, 1981, 17(1): 182-190.
http://dx.doi.org/10.1029/WR017i001p00182

[53] RICHARDSON, C. W., WRIGHT, D. A. WGEN: A model for gene-rating daily weather variables. Washington DC: US Department of Agricultural, Agricultural Research Service, ARS-8, 1984.

[54] NICKS, A. D., LANE, L. J. and GANDER, G. A. Chapter 2: Weather generator//FLANAGAN, D. C., NEARING, M. A. USDA Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation. West Lafayette Ind.: USDA-ARS National Soil Erosion Research Laboratory, NSERL Report No. 10, 1995: 2.1-2.22.

[55] STOCKLE, C. O., CAMPBELL, G. S. and NELSON, R. ClimGen manual. Pullman, Wash.: Washington State University, Department of Biological Systems Engineering, 1999.

[56] CHEN, J., BRISSETTE, F. P., LECONTE, R., et al. A versatile weather generator for daily precipitation and temperature. Transactions of the ASABE, 2012, 55(3): 895-906.
http://dx.doi.org/10.13031/2013.41522

[57] CHEN, J., BRISSETTE, F. P. and LECONTE, R. Downscaling of weather generator parameters to quantify hydrological impacts of climate change. Climate Research, 2012, 51(3): 185-200.
http://dx.doi.org/10.3354/cr01062

[58] WILKS, D. S. Adapting stochastic weather generation algorithms for climate change studies. Climatic Change, 1992, 22(1): 67-84.
http://dx.doi.org/10.1007/BF00143344

[59] MULLAN, D., CHEN, J. and ZHANG, X. C. Validation of non-stationary precipitation series for site-specific impact assessment: comparison of two statistical downscaling techniques. Climate Dynamics, 2016, 46(3): 967-986.
http://dx.doi.org/10.1007/s00382-015-2626-x

[60] CHEN, J., BRISSETTE, F. and ZHANG, X. C. Hydrological modeling using a multisite stochastic weather generator. ASCE’s Journal of Hydrologic Engineering, 2015, 21(2): 04015060-1-11.

[61] BAIGORRIA, G. A., JONES, J. W. GiST: A stochastic model for generating spatially and temporally correlated daily rainfall data. Journal of Climate, 2010, 23(22): 5990-6008.
http://dx.doi.org/10.1175/2010JCLI3537.1

[62] CORDANO, E. Multi-site auto-regressive weather generator. User Man-nual, 2015: 1-70.

[63] CHEN, J., BRISSETTE, F. and ZHANG, X. J. A multi-site stochastic weather generator for daily preci-pitation and temperature. Transactions of the ASABE, 2014, 57(5): 1375-1391.

[64] TANG, J., NIU, X., WANG, S., et al. Sta-tistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. Journal of Geophysical Research—Atmospheres, 2016, 121(5): 2110-2129.
http://dx.doi.org/10.1002/2015JD023977

[65] MARAUN, D. Nonstationarities of regional climate model biases in Euro-pean seasonal mean temperature and precipitation sums. Geophysical Research Letters, 2012, 39(39): 70-82.
http://dx.doi.org/10.1029/2012gl051210

[66] WANG, L., RANASINGHE, R., MASKEY, S., et al. Comparison of em-pirical statistical methods for downscaling daily climate projections from CMIP5 GCMs: A case study of the Huai River Basin, China. International Journal of Climatology, 2016, 36(1): 145-164.
http://dx.doi.org/10.1002/joc.4334

[67] ARSENAULT, R., POULIN, A., COTE, P., et al. Comparison of stochastic optimization algorithms in hydrological model calibration. Journal of Hydrologic Engineering, 2014, 19(7): 1374-1384.
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000938

[68] TERINK, W., HURKMANS, R. T. W. L., TORFS, P. J. J. F., et al. Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin. Hydrology and Earth System Sciences, 2010, 14(4): 687-703.
http://dx.doi.org/10.5194/hess-14-687-2010

[69] CHEN, J., BRISSETTE, F. P. and LUCAS-PICHER, P. Assessing the limits of bias-correcting climate model outputs for climate change impact studies. Journal of Geophysical Research-Atmospheres, 2015, 120(3): 1123-1136.
http://dx.doi.org/10.1002/2014JD022635

[70] DESER, C., KNUTTI, R., SOLOMON, S., et al. Communication of the role of natural variability in future North American climate. Nature Climate Change, 2012, 2(11): 775-779.
http://dx.doi.org/10.1038/nclimate1562

[71] DESER, C., PHILLIPS, A., BOURDETTE, V., et al. Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 2012, 38(3-4): 527-546.
http://dx.doi.org/10.1007/s00382-010-0977-x

[72] RISBEY, J. S., LEWANDOWSKY, S., LANGLAIS, C., et al. Well-estimated global surface warming in climate projections selected for ENSO phase. Nature Climate Change, 2014, 4(9): 835-U8840.
http://dx.doi.org/10.1038/nclimate2310

[73] MEHROTRA, R., SHARMA, A., BARI, M., et al. An assessment of CMIP5 multi-model decadal hindcasts over Australia from a hydrological viewpoint. Journal of Hydrology, 2014, 519: 2932-2951.
http://dx.doi.org/10.1016/j.jhydrol.2014.07.053

[74] WUEBBLES, D., MEEHL, G., HAYHOE, K., et al. CMIP5 CLIMATE MODEL ANALYSES climate extremes in the United States. Bulletin of the American Meteorological Society, 2014, 95(4): 571-583.
http://dx.doi.org/10.1175/BAMS-D-12-00172.1

[75] CHEN, J., BRISSETTE, F. P. and LI, Z. Postprocessing of ensemble weather forecasts using a stochastic weather generator. Monthly Weather Review, 2014, 142(3): 1106-1124.
http://dx.doi.org/10.1175/MWR-D-13-00180.1

[76] PIANI, C., HAERTER, J. O. Two dimensional bias correction of temperature and precipitation copulas in climate models. Geophysical Research Letters, 2012, 39(20): L20401-1-6.

[77] BRISSETTE, F. P., KHALILI, M. and LECONTE, R. Efficient stochastic generation of multi-site synthetic precipitation data. Journal of Hydrology, 2007, 345(3-4): 121-133.
http://dx.doi.org/10.1016/j.jhydrol.2007.06.035

[78] WILBY, R. L., HARRIS, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resources Research, 2006, 420(2): 563-575.
http://dx.doi.org/10.1029/2005wr004065

[79] CHEN, J., BRISSETTE, F. P., POULIN, A., et al. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resources Research, 2011, 47(12): 1-16.
http://dx.doi.org/10.1029/2011WR010602

[80] EBRAHIM, G. Y., JONOSKI, A., VAN GRIENSVEN, A., et al. Downscaling technique uncertainty in assessing hydrological impact of climate change in the Upper Beles River Basin, Ethiopia. Hydrology Research, 2013, 44(2): 377-398.
http://dx.doi.org/10.2166/nh.2012.037

[81] OUYANG, F., LU, H. S., ZHU, Y. H., et al. Uncertainty analysis of downscaling methods in assessing the influence of climate change on hydrology. Stochastic Environmental Research and Risk Assessment, 2014, 28(4): 991-1010.
http://dx.doi.org/10.1007/s00477-013-0796-9

[82] CISNEROS J., JIMÉNEZ-CISNEROS, B.E., OKI, T., ARNELL, N. W., BENITO, G., Cogley, J. G., Döll, P., JIANG, T. and MWAKALILA, S. S. 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects//FIELD, C. B., BARROS, V. R., DOKKEN, D. J., MACH, K. J., MASTRANDREA, M. D., BILIR, T. E., CHATTERJEE, M., EBI, K. L., ESTRADA, Y. O., GENOVA, R. C., GIRMA, B., KISSEL, E. S., LEVY, A. N., MACCRACKEN, S., MASTRANDREA, P. R. and WHITE, L. L. Contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2004: 229-269.

分享
Top