声带计算机仿真的新型数学–力学模型综述
Review on New Mathematical and Mechanical Models for the Computer Simulation of Vocal Cord

作者: 黄金潇 :青岛大学电子信息学院,山东 青岛;

关键词: 数学模型力学模型多质量块系统双向偏转Mathematical Models Mechanical Models More Mass Systems Two-Direction Deflection

摘要: 本文综述了目前声带仿真模型研究的新型数学模型和力学模型。基本模型是一个双质量块非线性振动系统,该系统被认为是一种基本发音过程的力学描述。声带模型不仅可以扩展为三质量块系统、五质量块系统和多质量块系统,也可以扩展为随时间变化而导致参数不同的系统,或者是三维系统。另外,还可以简化成一个具有双向偏转和具有阻尼功能的耦合系统。相应的数学模型对应的二阶微分方程系统,描述了对称和非对称声带的振动。以上这些模型给出了规则和不规则运动的条件,这些运动发生在声带的分叉点,或者是确定性混沌状态。当我们不能从视觉上看出有疾病时,实验得出的结果使得检查声带的病理状态有特殊的意义。根据文中给出的结果,在未来进行这项研究是一个可以实现的目标。

Abstract: A review on new mathematical and mechanical models of the vocal cords is given. The basic model is a two-mass nonlinear oscillator system which is accepted to be the basic one for mechanical de-scription in voice production. The model is not only extended into three, five, and more mass sys-tems, systems with time variable parameters and three-dimensional systems, but also simplified into one-mass system with coupled two-direction deflection and damping functions. The corres-ponding mathematical models are the systems of coupled second-order differential equations which describe the vibrations of the symmetric and asymmetric vocal folds. The models give the conditions for the regular and irregular motions like bifurcation and deterministic chaos in vocal folds. The obtained results are of special interest for detecting the pathology of vocal cords, when there is no visual effect of disease. Based on the results given in the paper, the objectives for future investigation in this matter are given.

文章引用: 黄金潇 (2016) 声带计算机仿真的新型数学–力学模型综述。 计算机科学与应用, 6, 434-442. doi: 10.12677/CSA.2016.67053

参考文献

[1] 赵力. 语音信号处理[M]. 北京: 机械工业出版社, 2007.

[2] Adachi, S. and Yu, J. (2005) Two-Dimensional Model of Vocal Fold Vibration for Sound Synthesis of Voice and Soprano Singing. Journal of the Acoustical Society of America, 117, 3213-3224.
http://dx.doi.org/10.1121/1.1861592

[3] Wurzbacher, T., Schwarz, R., Döllinger, M., Hoppe, U., Eysholdt, U. and Lohscheller, J. (2006) Model-Based Classification of Nonstationary Vocal Fold Vibrations. Journal of the Acoustical Society of America, 120, 1012-1027.
http://dx.doi.org/10.1121/1.2211550

[4] 王宏, 潘金贵. 基于共振峰增强的语音信号共振峰频率估计[J]. 计算机应用与软件, 2008, 25(11): 140-142.

[5] 杨顺安. 面向声学语音学的普通话语音合成技术[M]. 北京: 清华大学出版社, 2003.

[6] Mehta, D.D., Deliyski, D.D., Quatieri, T.F. and Hillman, R.E. (2011) Automated Measurement of Vocal Fold Vibratory Asymmetry from High-Speed Videoendoscopy Recordings. Journal of Speech, Language, and Hearing Research, 54, 47-54.
http://dx.doi.org/10.1044/1092-4388(2010/10-0026)

[7] Cronjaeger, R. (1978) Die Entstehung des primaeren Stimmklangs im menschlichen Kehlkopf—Ein Modell. Ph.D. Dissertation, University of Braunschweig, Braunschweig.

[8] Fulcher, L.P., Scherer, R.C., Melnykov, A., Gateva, V. and Limes, M.E. (2006) Negative Coulomb Damping, Limit Cycles, and Self-Oscillation of the Vocal Folds. American Journal of Physics, 74, 386-393.
http://dx.doi.org/10.1119/1.2173272

[9] 吴永忠. 基于物理模型的声音合成技术理论研究[D]: [博士学位论文]. 合肥: 合肥工业大学, 2003.

[10] Lucero, J.C. and Koenig, L.L. (2005) Simulations of Temporal Patterns of Oral Airflow in Men and Women Using a Two-Mass Model of the Vocal Folds under Dynamic Control. Journal of the Acoustical Society of America, 117, 1362-1372.
http://dx.doi.org/10.1121/1.1853235

[11] Onerci, T.M. (2010) Diagnosis in Otorhinolaryngology, Springer, London.
http://dx.doi.org/10.1007/978-3-642-00499-5

[12] Flanagan, J.L. (1968) Source-System Interaction in the Vocal Tract. Annals of the New York Academy of Sciences, 155, 9-17.
http://dx.doi.org/10.1111/j.1749-6632.1968.tb56744.x

[13] Isshiki, N., Tanabe, M., Ishizaka, K. and Broad, D. (1977) Clinical Significance of Asymmetrical Vocal Cord Tension. Annals of Otology, Rhinology and Laryngology, 86, 58-66.

[14] Steinecke, I. and Herzel, H. (1995) Bifurcations in an Asymmetric Vocal-Fold Model. Journal of the Acoustical Society of America, 97, 1874-1884.
http://dx.doi.org/10.1121/1.412061

[15] Mergell, P., Herzel, H. and Titze, I.R. (2000) Irregular Vocal-Fold Vibration—High-Speed Observation and Modeling. Journal of the Acoustical Society of America, 108, 2996-3002.
http://dx.doi.org/10.1121/1.1314398

[16] Eysholdt, U., Rosanowski, F. and Hoppe, U. (2003) Vocal Fold Vibration Irregularities Caused by Different Types of Laryngeal Asymmetry. European Archives of Oto-Rhino-Laryngology, 260, 412-417.
http://dx.doi.org/10.1007/s00405-003-0606-y

[17] Zhang, Y. and Jiang, J.J. (2004) Chaotic Vibrations of a Vocal Fold Model with a Unilateral Polyp. Journal of the Acoustical Society of America, 115, 1266-1269.
http://dx.doi.org/10.1121/1.1648974

[18] Schwarz, R., Hoppe, U., Schuster, M., Wurzbacher, T., Eysholdt, U. and Lohscheller, J. (2006) Classification of Unilateral Vocal Fold Paralysis by Endoscopic Digital High-Speed Recordings and Inversion of a Biome-chanical Model. IEEE Transactions on Biomedical Engineering, 53, 1099-1108.
http://dx.doi.org/10.1109/TBME.2006.873396

[19] Zhang, Z. (2010) Vibration in a Self-Oscillating Vocal Fold Model with Left-Right Asymmetry in Body-Layer Stiffness. Journal of the Acoustical Society of America, 128, EL279-EL285.
http://dx.doi.org/10.1121/1.3492798

[20] Mehta, D.D., Deliyski, D.D., Quatieri, T.F. and Hillman, R.E. (2011) Automated Measurement of Vocal Fold Vibratory Asymmetry from High-Speed Videoendoscopy Recordings. Journal of Speech, Language, and Hearing Research, 54, 47-54.
http://dx.doi.org/10.1044/1092-4388(2010/10-0026)

[21] Wurzbacher, T., Schwarz, R., Dollinger, M., Hoppe, U., Eysholdt, U. and Lohscheller, J. (2006) Model-Based Classification of Nonstationary Vocal Fold Vibrations. Journal of the Acoustical Society of America, 120, 1012-1027.
http://dx.doi.org/10.1121/1.2211550

[22] 张礼和, 程启明. 嘶音的三质量块声带模型分析法[J]. 中国生物医学工程学报, 1991, 10(4): 208-214.

[23] Cveticanin, L. (1992) The Influence of the Reactive Force on a Nonlinear Oscillator with Variable Para-meter. Journal of Applied Mechanics, 114, 578-580.

[24] Cveticanin, L. (1993) Approximate Solution of a Coupled Differential Equation with Variable Parameter. Journal of Applied Mechanics, 60, 214-217.
http://dx.doi.org/10.1115/1.2900753

[25] Cveticanin, L. (1995) Approximate Solution of a Time-Dependent Differential Equation. Meccanica, 30, 665-671.
http://dx.doi.org/10.1007/BF00986572

[26] 蔡莲红, 现代语音技术基础与应用[M]. 北京: 清华大学出版社, 2003.

[27] J.P.H. van Santen. 语音合成[M]. 北京: 力学工业出版社, 2005.

[28] 赵守国, 王素品, 孙义和. 声带振动功能模式识别的研究[J]. 西安交通大学学报, 2002, 12(36): 1258-1261.

[29] Stepp, C.E., Hillman, R.E. and Heaton, J.T. (2010) A Virtual Trajectory Model Predicts Differences in Vocal Fold Kinematics in Individuals with Vocal Hyperfunction. Journal of the Acoustical Society of America, 127, 3166-3176.

[30] 胡航. 语音信号处理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2009.

[31] 边肇祺, 张学工. 模式识别[M]. 北京: 清华大学出版社, 2000.

[32] 万明习, 程敬之. 声门图信号起源及其与声带振动模式的关系[J]. 中国生物医学工程学报, 1992(2): 120-127.

[33] Wurzbacher, T., Dollinger, M., Schwarz, R., Hoppe, U., Eysholdt, U. and Lohscheller, J. (2008) Spatiotemporal Classification of Vocal Fold Dynamics by a Multimass Model Comprising Time-Dependent Parameters. Journal of the Acoustical Society of America, 123, 2324-2334.
http://dx.doi.org/10.1121/1.2835435

分享
Top