局部二值模式方法综述及研究展望
An Overview and Research Perspective of Local Binary Pattern

作者: 张慧娜 * , 李裕梅 :北京工商大学,理学院数学系,北京;

关键词: 局部二值模式纹理分析人脸识别多特征融合Local Binary Pattern Texture Analysis Field Face Recognition Field Multi-Feature Fusion

摘要:
局部二值模式(Local binary pattern, LBP)是一种像素层的局部特征,编码了中心像素与周围像素之间的相对强度值。由于其理论简单、计算高效,具有较高的特征辨别力和较低的计算复杂度,因此在纹理分类、人脸识别和表情检测等计算机视觉领域得到了广泛的应用,进而提出了许多LBP扩展方法,在辨别性、鲁棒性和计算效率方面有了很大提高。鉴于LBP的理论意义和使用价值,为使研究者对LBP有一个更为全面的认识和了解,便于深入研究,在前面综述文献的基础上进一步对LBP及其扩展模式进行综述,归纳了LBP改进模式的结构和LBP在不同领域中的具体应用,分析了基本LBP方法及其扩展方法结构和其优缺点,在辨别性、低维性、不变性方面与局部描述符进行了对比,总结了LBP扩展模式的应用领域。最后指出LBP扩展模式有待继续完善和发展的研究方向。

Abstract: Local Binary Pattern (LBP) is a local feature on pixel level, which encodes the relative strength among the center pixel and the surrounding pixels. Because of its simple principle, high computational efficiency and feature discrimination, and low computational complexity, it has been popular in the computer vision field, such as in texture analysis field, face recognition field, expression detection field, and so on. Moreover, a number of extended methods about LBP, which are greatly improved in discrimination, robustness, and computational efficiency, are proposed. In view of the theoretical and practical value of LBP, in order to make the researcher have more comprehensive understanding and further study about LBP, this paper overviews LBP and its extended, and summarizes the specific application in different fields, and analyses the structure, as well as advantages and disadvantages. Then, some comparisons are done between LBP and other local descriptors in the aspect of identification, low dimension and invariance, and some conclusions are done about the application field of the extended LBP models. Finally, the future research directions of the extended LBP models are proposed.

文章引用: 张慧娜 , 李裕梅 (2016) 局部二值模式方法综述及研究展望。 图像与信号处理, 5, 121-146. doi: 10.12677/JISP.2016.53016

参考文献

[1] Ojala, T., Pietikinen, M. and Harwood, D. (1996) A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition, 29, 51-59. http://dx.doi.org/10.1016/0031-3203(95)00067-4

[2] Pietikinen, M., Ojala, T., Nisula, J. and Heikkinen, J. (1994) Experiments with Two Industrial Problems Using Texture Classification Based on Feature Distributions. Proceedings of Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision, 2354, 197-204. http://dx.doi.org/10.1117/12.189087

[3] Ojala, T., Pietikinen, M. and Menp, T. (2002) Multiresolution Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 971-998. http://dx.doi.org/10.1109/TPAMI.2002.1017623

[4] Pietikinen, M., Nurmela, T., Menp, T. and Turtinen, M. (2004) View-Based Recognition of Real-World Textures. Pattern Recognition, 37, 313-323. http://dx.doi.org/10.1016/S0031-3203(03)00231-0

[5] Guo, Z., Zhang, L. and Zhang, D. (2010) A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Transactions on Image Processing, 19, 1657-1663. http://dx.doi.org/10.1109/TIP.2010.2044957

[6] Guo, Y., Zhao, G. and Pietikainen, M. (2010) Descriptor Learning Based on Fisher Separation Criterion for Texture Classification. Proceeding of Asian Conference on Computer Vision, Queenstown, 8-12 November 2010, 1491-1500.

[7] Li Stan, Z. and Jain Anil, K. (2004) Handbook of Face Recognition. Springer-Verlag, Berlin.

[8] Ahonen, T., Hadid, A. and Pietikinen, M. (2006) Face Description with Local Binary Patterns: Application to Face Recogniton. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 2037-2041. http://dx.doi.org/10.1109/TPAMI.2006.244

[9] Connah, D. and Finlayson Graham, D. (2006) Using Local Binary Pattern Operators for Colour Constant Image Indexing. Proceeding of European Conference on Color in Graphics, Imaging, and Vision, Leeds, 19-22 June 2006, 60-64.

[10] Jin, H., Liu, Q., Lu, H. and Tong, X. (2004) Face Detection Using Improved LBP under Bayesian Framework. IEEE First Symposium on Multi-Agent Security and Survivability, Hong Kong, 18-20 December 2004, 306-309.

[11] Hadid, A., Pietikinen, M. and Ahonen, T. (2004) A Discriminative Feature Space for Detecting and Recognizing Faces. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, 2, 797-804. http://dx.doi.org/10.1109/cvpr.2004.1315246

[12] Smith, R.S. and Windeatt, T. (2010) Facial Expression Detection Using Filtered Local Binary Pattern Features with ECOC Classifiers And Plat Scaling. JMLR Workshop on and Conference Proceedings of Applications of Pattern Analysis, 11, 111-118.

[13] Sánchez-Yáñez, R.E., Kurmyshev, E.V. and Cuevas, F.J. (2003) A Framework for Texture Classification Using the Coordinated Clusters Representation. Pattern Recognition Letters, 24, 21-31. http://dx.doi.org/10.1016/S0167-8655(02)00185-X

[14] Zhou, H., Wang, R. and Wang, C. (2008) A Novel Extended Lo-cal-Binary-Pattern Operator for Texture Analysis. Information Sciences, 178, 4314-4325. http://dx.doi.org/10.1016/j.ins.2008.07.015

[15] Maenpaa, T., Ojala, T., Pietikainen, M. and Maricor, S. (2000) Robust Texture Classification by Subsets of Local Binary Patterns. Proceeding of 15th International Conference on Pattern Recognition, 3, 947-950.

[16] Randen, T. and Husoy, J.H. (1999) Filtering for Texture Classification: A Comparative Study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 291-310. http://dx.doi.org/10.1109/34.761261

[17] Xie, X. and Mirmehdi, M. (2008) A Galaxy of Texture Features. In: Mirmehdi, M., Xie, X. and Suri. J.S., Eds., Handbook of Texture Analysis, Imperial College Press, London, 375-406. http://dx.doi.org/10.1142/9781848161160_0013

[18] 刘丽, 谢毓湘, 魏迎梅, 老松杨. 局部二进制模式方法综述. 中国图象图形学报, 2014, 19(12): 1696-1720.

[19] 宋克臣, 颜云辉, 陈文辉, 张旭. 局部二值模式方法研究与展望. 自动化学报, 2013, 39(6): 730-744.

[20] Pietikainen, M., Ojala, T. and Xu, Z. (2000) Rotation Invariant Texture Classification Using Feature Distributions. Pattern Recognition, 33, 43-52. http://dx.doi.org/10.1016/S0031-3203(99)00032-1

[21] Pietikainen, M. and Ojala, T. (1996) Image Technology-Advances in Image Processing, Multimedia and Machine Vision. Springer, Berlin.

[22] Lowe, D.G. (2004) Distinctive Image Features from Scale Invariant Key Points. International Journal of Computer Vision, 60, 91-110. http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

[23] Takacs, G., Chandrasekhar, V., Tsai, S. Chen, D., Grzeszczuk, R. and Girod, B. (2010) Unified Real-Time Tracking and Recognition with Rotation Invariant Fast Features. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 13-18 June 2010, 934-941. http://dx.doi.org/10.1109/cvpr.2010.5540116

[24] Hussain, S., Napoleon, T. and Jurie, F. (2012) Face Recognition Using Local Quantized Patterns. British Machine Vision Conference, Guildford, 99.1-99.11. http://dx.doi.org/10.5244/c.26.99

[25] Chen. J., Shan, S., He, C., et al. (2010) WLD: A Robust Local Image Descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 1705-1720. http://dx.doi.org/10.1109/TPAMI.2009.155

[26] Ojala, T., Pietikainen, M. and Menp, T. (2000) Multiresolution Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns. Proceedings of IEEE European Conference on Computer Vision, Lecture Notes in Computer Science, 1842, 404-420. http://dx.doi.org/10.1007/3-540-45054-8_27

[27] Zhou, L., Zhou, Z. and Hu, D. (2013) Scene Classification Using a Multiresolution Bag-of-Feature Model. Pattern Re- cognition, 46, 424-433. http://dx.doi.org/10.1016/j.patcog.2012.07.017

[28] Hafianel, A., Seetharaman, G. and Zavidovique, B. (2007) Median Binary Pattern for Textures Classification. Proceedings of International Conference on Image Analysis and Recognition, Iciar, Montreal, August 2007, 387-398.

[29] Liao, S., Law, M.W.K. and Chung, A.C.S. (2009) Dominal Local Binary Patterns for Texture Classification. IEEE Transactions on Image Processing, 18, 1107-1118. http://dx.doi.org/10.1109/TIP.2009.2015682

[30] Froba, B. and Ernst, A. (2004) Face Detection with the Modified Census Transform. IEEE International Conference on Face and Gesture Recognition, Korea, 17-19 May 2004, 91-96. http://dx.doi.org/10.1109/afgr.2004.1301514

[31] Nannia, L., Brahnamb, S. and Luminia, A. (2010) A Local Approach Based on a Local Binary Patterns Variant Texture Descriptor for Classifying Pain States. Expert Systems with Applications, 37, 7888-7894. http://dx.doi.org/10.1016/j.eswa.2010.04.048

[32] Liao, S., Zhu, X., Lei, Z., Zhang, L. and Li, S.Z. (2007) Learning Multi-Scale Block Local Binary Patterns for Face Recognition. In: Lee, S.-W. and Li, S.Z., Eds., Advances in Biometrics, Springer, Berlin, 828-837. http://dx.doi.org/10.1007/978-3-540-74549-5_87

[33] Chan, T.F. and Vese Luminita, A. (2001) Active Contours without Edges. IEEE Transactions on Image Processing, 10, 266-277. http://dx.doi.org/10.1109/83.902291

[34] Zhang, W., Shan, S., Gao, W., Chen. X. and Zhang, H. (2005) Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A Novel Non-Statistical Model for Face Representation and Recognition. IEEE Conference on Computer Vision, 1, 786-791.

[35] Kekre, H.B., Thepade Sudeep, D. and Maloo, A. (2010) Query by Image Content Using Color-Texture Features Extracted from Haar Wavelet Pyramid. International Journal of Computer Applications, 52-60. http://dx.doi.org/10.5120/1006-41

[36] Banerji, S., Sinha, A. and Liu, C. (2013) New Image Descriptors Based on Color, Texture, Shape, and Wavelets for Object and Scene Image Classification. Neurocomputing, 11, 173-185. http://dx.doi.org/10.1016/j.neucom.2013.02.014

[37] Sugata, B., Atreyee, S. and Liu, C. (2012) Scene Image Classification: Some Novel Descriptors. 2012 IEEE International Conference on System, Man, Cybernetics, Seoul, 14-17 October 2012, 2294-2299.

[38] Atreyee, S., Sugata, B. and Liu, C. (2012) Novel Color Gabor-LBP-PHOG (GLP) Descriptors for Object and Scene Image Classification. Proceedings of the Eighth Indian Conference on Computer Vision, Graphics and Image Processing, Mubai, 1-8.

[39] Heikkila, M., Pietikainen, M. and Schmid, C. (2009) Description of Interest Regions with Local Binary Patterns. Pattern Recognition, 42, 425-436. http://dx.doi.org/10.1016/j.patcog.2008.08.014

[40] Guo, Z.H., Zhang, L. and Zhang, D. (2010) Rotation Invariance Texture Classification Using LBP Variance (LBPV) with Global Matching. Pattern Recognition, 43, 706-719. http://dx.doi.org/10.1016/j.patcog.2009.08.017

[41] He, C., Ahonen, T. and Pietikainen, M. (2008) A Bayesian Local Binary Pattern Texture Descriptor. Proceedings of the 19th International Conference on Pattern Recognition, Tampa, 8-11 December 2008, 1-4.

[42] Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M. and Li, S.Z. (2010) Modeling Pixel Process with Scale Invariant Local Patterns for Background Subtraction in Complex Scenes. Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 13-18 June 2010, 1301-1306. http://dx.doi.org/10.1109/cvpr.2010.5539817

[43] Guo, Z.H., Zhang, L., Zhang, D. and Zhang, S. (2010) Rotation Invariant Texture Classification Using Adaptive LBP with Directional Statistical Features. Processing of the 17th IEEE International Conference on Image Processing, Hong Kong, 26-29 September 2010, 285-288. http://dx.doi.org/10.1109/icip.2010.5652209

[44] Varma, M. and Zisserman, A. (2009) A Statistical Approach to Material Classification Using Image Patch Exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 2032-2047. http://dx.doi.org/10.1109/TPAMI.2008.182

[45] Liu, L., Zhao, L.J., Long, Y.L., Kuang, G. and Fiegut, P. (2012) Extended Local Binary Patterns for Texture Classification. Image and Vision Computing, 30, 86-99. http://dx.doi.org/10.1016/j.imavis.2012.01.001

[46] Khellah, F.M. (2011) Texture Classification Using Dominant Neighborhood Structure. IEEE Transactions on Image Processing, 20, 3270-3279. http://dx.doi.org/10.1109/TIP.2011.2143422

[47] Zhang, J., Liang, J. and Zhao, H. (2013) Local Energy Pattern for Texture Classification Using Self-Adaptive Quantization Thresholds. IEEE Transactions on Image Processing, 22, 31-42. http://dx.doi.org/10.1109/TIP.2012.2214045

[48] Zhao, G., Ahonen, T., Matas, J. and Pietikainen, M. (2012) Rotation-Invariant Image and Video Description with Local Binary Pattern Features. IEEE Transactions on Image Processing, 21, 1465-1477. http://dx.doi.org/10.1109/TIP.2011.2175739

[49] Qi, X., Shen, L., Zhao, G., Li, Q. and Pietikäinen, M. (2015) Globally Rotation Invarinant Multi-Scale Co-Occurrence Local Binary Pattern. Image and Vision Computing, 43, 16-26. http://dx.doi.org/10.1016/j.imavis.2015.07.005

[50] Ryu, J., Hong, S. and Yang, H.S. (2015) Sorted Consecutive Local Binary Pattern for Texture Classification. IEEE Transactions on Image Processing, 7, 2254-2265.

[51] Davarzani, R., Mozaffari, S. and Yaghmaie, K. (2015) Scale- and Rotation-Invariant Texture Description with Improved Local Binary Pattern Features. Signal Processing, 111, 274-293. http://dx.doi.org/10.1016/j.sigpro.2014.11.005

[52] Tao, Q. and Veldhuis, R.N.J. (2007) Illumination Normalization Based on Simplified Local Binary Patterns Foe a Face Verification System. Biometrics Symposium 2007 at the Biometrics Consortium Conference, Baltimore, 11-13 September 2007, 1-6.

[53] Petpon, A. and Srisuk, S. (2010) Face Recognition with Local Line Binary Pattern. Proceedings of the 5th International Conference on Image and Graphics, Xi’an, 20-23 September 2009, 533-539.

[54] Fu, X.F. and Wei, W. (2008) Centralized Binary Patterns Embedded with Image Euclidean Distance for Facial Expression Recognition. Proceedings of the 4th International Conference on Natural Computation, 4, 115-119.

[55] Wang, L. Zhang, Y. and Feng, J. (2005) On the Euclidean Distance of Image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1334-1339. http://dx.doi.org/10.1109/TPAMI.2005.165

[56] Wolf, L., Hassner, T. and Taigman, Y. (2011) Effective Unconstrained Face Recognition by Combining Multiple Descriptors and Learned Background Statistics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1978-1990. http://dx.doi.org/10.1109/TPAMI.2010.230

[57] Maturana, D., Soto, A. and Mery, D. (2011) Face Recognition with Decision Tree-Based Local Binary Patterns. Processing of the Asian Conference on Computer Vision, Queenstown, 8-12 November 2010, 618-629. http://dx.doi.org/10.1007/978-3-642-19282-1_49

[58] Chan, C.H., Kittler, J.V. and Messer, K. (2007) Multispectral Local Binary Pattern Histogram for Component-Based Color Face Verification. Proceedings of IEEE Conference on Biometrics, Crystal City, 27-29 September 2007, 1-7. http://dx.doi.org/10.1109/btas.2007.4401951

[59] Chan, C.H., Kittler, J. and Messer, K. (2007) Multi-Scale Local Binary Pattern Histograms for Face Recognition. Proceedings of IEEE Conference on Biometrics, Seoul, 27-29 August 2007, 809-818. http://dx.doi.org/10.1007/978-3-540-74549-5_85

[60] Lahdenoja, O., Laiho, M. and Paasio, A. (2005) Reducing the Feature Vector Length in Local Binary Pattern Based Face Recognition. IEEE International Conference on Image Processing, 2, 914-917. http://dx.doi.org/10.1109/icip.2005.1530205

[61] Zhang, B.C., Gao, Y.S., Zhao, S.Q. and Liu, J. (2010) Local Derivative Pattern versus Local Binary Pattern: Face Recognition with Higher-Order Local Pattern Sedcriptor. IEEE Transactions on Image Processing, 19, 533-544. http://dx.doi.org/10.1109/TIP.2009.2035882

[62] Chao, W., Ding, J. and Liu, J. (2015) Facial Expression Recognition Based on Improved Local Binary Pattern and Class-Regularized Locality Preserving Projection. Signal Processing, 117, 1-10. http://dx.doi.org/10.1016/j.sigpro.2015.04.007

[63] Yan, S.Y., Shan, S.G., Chen, X. and Gao, W. (2008) Locally Assembled Binary (LAB) Feature with Feature-Centric Cascade for Fast and Accurate Face Detection. Proceedings of the IEEE Conference on Computer Vision and Patern Recognition, Anchorage, 23-28 June 2008, 1-7.

[64] Radhey, S. and Singh, Y.N. (2015) Face Recognition Using Augmented Local Binary Pattern and Bray Curtis Dissimilarity Metric. The 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, 19-20 February 2015, 779-784.

[65] Nanni, L., Brahnam, S. and Lumini, A. (2010) Local Binary Patterns Variants as Texture Descriptors for Medical Image Analysis. Artificial Intelligence in Medicine, 49, 117-125. http://dx.doi.org/10.1016/j.artmed.2010.02.006

[66] Trefny, J. and Matas, J. (2010) Extended Set of Local Binary Patterns for Rapid Object Detection. Proceedings of the 15th Computer Vision Winter Workshop (CVWW), Nové Hrady, 3-5 February 2010, 1-7.

[67] Mu, Y.D., Yan, S.C., Liu, Y., Huang, T. and Zhou, B. (2008) Discriminative Local Binary Patterns for Human Detection in Personal Album. Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 23-28 June 2008, 1-8.

[68] Dalal, N. and Triggs, B. (2005) Histograms of Oriented Gradients for Human Detection. Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition, 1, 886-893. http://dx.doi.org/10.1109/CVPR.2005.177

[69] Zhao, G.Y. and Pietikainen, M. (2007) Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 915-928. http://dx.doi.org/10.1109/TPAMI.2007.1110

[70] Kellokumpu, V., Zhao, G.Y. and Pietikainen, M. (2008) Texture Based Description of Movements for Activity Analysis. Proceedings of the 2008 International Conference on Computer Vision Theory and Applications, Funchal, 22-25 January 2008, 206-213.

[71] Kellokumpu, V., Zhao, G.Y., Li, S.Z. and Pietikäinen, M. (2009) Dynamic Texture Based Gait Recognition. Proceedings of the 3rd International Conference on Advances in Biometric, Alghero, 2-5 June 2009, 1000-1009. http://dx.doi.org/10.1007/978-3-642-01793-3_101

[72] Kellokumpu, V., Zhao, G.Y. and Pietikainen, M. (2011) Recognition of Human Actions Using Texture Descriptors. Machine Vision and Applications, 22, 767-780. http://dx.doi.org/10.1007/s00138-009-0233-8

[73] Costa, Y.M.G., Oliveira, L.S., Koerich, A.L., Gouyon, F. and Martins, J.G. (2012) Music Genre Classification Using LBP Textural Features. Signal Processing, 92, 2723-2737. http://dx.doi.org/10.1016/j.sigpro.2012.04.023

[74] Yogesh, R. and Gong, S. (2006) Sparse Multiscale Local Binary Patterns. British Machine Vision Conference, British, 799-808.

[75] He, Y. and Gao, C. (2011) Pyramid-Based Multi-Structure Local Binary Pattern for Texture Classification. Proceedings of the 10th Asian Conference on Computer Vision, Queenstown, 8-12 November 2010, 133-144. http://dx.doi.org/10.1007/978-3-642-19318-7_11

[76] Fathi, A. and Naghsh-Nilchi, A.R. (2012) Noise Tolerant Local Binary Pattern Operator for Efficient Texture Analysis. Pattern Recognition Letters, 33, 1093-1100. http://dx.doi.org/10.1016/j.patrec.2012.01.017

[77] Ahonen, T. and Pietikainen, M. (2007) Soft Histograms for Local Binary Patterns. Proceedings of the 2007 Finnish Signal Processing Symposium, Oulu, 30 August 2007, 1-4.

[78] Iakovidis, D.K., Keramidas, E.G. and Maroulis, D. (2008) Fuzzy Local Binary Patterns for Ultrasound Texture Characterization. Proceedings of the 5th International Conference on Image Analysis and Recognition, Póvoa de Varzim, 25-27 June 2008, 750-759. http://dx.doi.org/10.1007/978-3-540-69812-8_74

[79] Yao, C. and Chen, S. (2003) Retrieval of Translated, Rotated and Scaled Color Textures. Pattern Recognit, 36, 913- 929. http://dx.doi.org/10.1016/S0031-3203(02)00124-3

[80] Zhang, L., Zhang, D., Guo, Z. and Zhang, D. (2010) Monogenic-LBP: A New Approach for Rotation Invariant Texture Classification. Proceedings of the 17th International Conference on Image Processing, Hong Kong, 26-29 September 2010, 2677-2680. http://dx.doi.org/10.1109/icip.2010.5651885

[81] Tan, X. and Triggs, B. (2007) Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions. Analysis and Modeling of Faces and Gestures, Lecture Notes in Computer Science, 4778, 168-182. http://dx.doi.org/10.1007/978-3-540-75690-3_13

[82] Li, X., Hu, W., Zhang, Z. and Wang, H. (2010) Heat Kernel Based Local Binary Pattern for Face Representation. IEEE Signal Processing Letters, 17, 308-311. http://dx.doi.org/10.1109/LSP.2009.2036653

[83] Liao, S. and Chung Albert, C.S. (2007) Face Recognition by Using Enlongated Local Binary Patterns with Average Maximum Distance Gradient Magnitude. Computer Vision-ACCV 2007 Lecture Notes in Computer Science, 4844, 672-679. http://dx.doi.org/10.1007/978-3-540-76390-1_66

[84] Maenpaa, T. and Pietikainen, M. (2003) Multi-Scale Binary Patterns for Texture Analysis. Scandinavian Conference on Image Analysis, Lecture Notes in Computer Science, 2749, 885-892. http://dx.doi.org/10.1007/3-540-45103-X_117

[85] Maenpaa, T. and Pietikainen, M. (2010) Classification with Color and Texture: Jointly or Separately? Pattern Recognition, 37, 1629-1640. http://dx.doi.org/10.1016/j.patcog.2003.11.011

[86] Zhu, C., Bichot, C.E. and Chen, L. (2010). Multi-scale Color Local Binary Patterns for Visual Object Classes Recognition. Proceeding of International Conference on Pattern Recognition, Istanbul, 23-26 August 2010, 3065-3068. http://dx.doi.org/10.1109/ICPR.2010.751

[87] Porebski, A., Vandenbroucke, N. and Macaire, L. (2008) Haralick Feature Extraction from LBP Images for Color Texture Classification. Proceeding of Workshop on Image Processing Theory, Tools and Applications, Sousse, 23-26 November 2008, 1-8. http://dx.doi.org/10.1109/ipta.2008.4743780

[88] Tan, X. and Triggs, B. (2007) Fusing Gabor and LBP Feature Sets for Kernel-Based Face Recognition. International Conference on Analysis and Modeling of Faces and Gestures, 4778, 235-249. http://dx.doi.org/10.1007/978-3-540-75690-3_18

[89] Wang, X., Han, T.X. and Yan, S. (2009) An HOG-LBP Human Detector with Partial Occlusion Handling. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, 29 September-2 October 2009, 32-39. http://dx.doi.org/10.1109/ICCV.2009.5459207

分享
Top