加速器驱动次临界系统(ADS)及其散裂靶的研究现状
Study on the Development of Accelerator Driven System (ADS) and Its Spallation Target

作者: 徐雅晨 :清华大学天津高端装备研究院先进能源装备技术研究所,天津; 亢方亮 :海装重庆局,四川 成都; 盛选禹 :清华大学核能与新能源技术研究院,北京;

关键词: 核能乏燃料ADS散裂靶Nuclear Power Nuclear Waste ADS Spallation Target

摘要: 加速器驱动次临界系统(ADS)被国际公认为是最有前景的核废料嬗变技术,该系统以加速器产生的高能强流质子束轰击靶核产生散裂中子作为外源中子驱动和维持次临界堆运行,具有固有安全性。中子散裂靶起着将散裂反应中产生的中子耦合到反应堆的重要作用,是ADS系统中最为重要的一部分,随着束流功率不断增高,靶材的选取变得尤为重要,其中由中科院近代物理研究所提出的颗粒流散裂靶结合了固态靶和液态靶的优点,具有承受未来ADS商业化装置需要耦合束流功率数十MW的能力。

Abstract: ADS (Accelerator Driven System) has been universally regarded as the most promising approach to dispose the long-lived nuclear waste. This system takes the spallation neutrons as the external neutron source to drive and maintain the operation of the subcritical blanket system and has the inherent safety. Spallation target is the most important part of accelerator-driven subcritical sys-tem, playing a role in coupling neutrons created through spallation process to reactor. With in-creasing of the beams power, the material of spallation target becomes particular critical. Granular material as the spallation target proposed by the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences has the advantages of both solid and liquid targets, and can endure dozens of megawatt level of the future ADS commercial devices.

文章引用: 徐雅晨 , 亢方亮 , 盛选禹 (2016) 加速器驱动次临界系统(ADS)及其散裂靶的研究现状。 核科学与技术, 4, 88-97. doi: 10.12677/NST.2016.43011

参考文献

[1] [1] 潘自强, 马忠海, 李旭彤, 毋涛, 修炳林. 我国煤电链和核电链对健康、环境和气候影响的比较[J]. 辐射保护, 2001, 21(3):129-145.

[2] 夏秀芳. 温室效应的影响与我国的应对措施[J]. 和田师范专科学校学报, 2011, 30(2): 20-21.

[3] 华贲. 产业结构、能效及一次能源构成对能源强度的影响分析[J]. 中外能源, 2010, 15(5): 1-7.

[4] 詹文龙,徐瑚珊. 未来先进核裂变能-ADS嬗变系统[J]. 中国科学院院刊, 2012, 27(3): 375-380.

[5] 赵仁恺. 中国核电的可持续发展[J]. 中国工程科学, 2000, 2(10): 33-41.

[6] 肖新建. 2011年中国核电发展状况、未来趋势及政策建议[J]. 中国能源, 2012, 34(2): 18-23.

[7] 陈建琪. ADS散裂靶产物的放射性分析[D]: [硕士学位论文]. 兰州: 中科院近代物理研究所, 2015.

[8] 张苏雅拉吐. ADS散裂靶相关核数据测量装置的建立及钨评价中子核数据的基准检验[D]: [博士学位论文]. 兰州: 中科院近代物理研究所, 2015.

[9] 赵子甲. ADS散裂靶中子学分析与设计优化[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2014.

[10] 于涛. 加速器驱动次临界系统(ADS)束流瞬变动态响应的微机仿真研究[D]: [博士学位论文]. 北京: 中国原子能科学研究院, 2005.

[11] 党同强. 铅铋反应堆放射性源项计算与剂量评估研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2013.

[12] 史永谦. 核电站乏燃料对生物圈的影响及ADS对策[J]. 原子核物理评论, 2007, 24(2): 151-155.

[13] 罗上庚. 核废物的安全和环境影响[J]. 安全与环境学报, 2001, 1(2): 16-20.

[14] 谢运棉. 核废物处置及其环境影响(一)[J]. 环境工程, 1991, 9(3): 56-58.

[15] 袁涛, 王晓宇, 粟再新, 等. 核废物处理途径的探讨[J]. 科学技术与工程, 2004, 4(10): 861-867.

[16] 胡晨. ADS液态无窗散裂靶件水力实验和数值研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2013.

[17] 许晓伟. ADS有窗散裂靶流场可视化实验及模拟研究[D]: [硕士学位论文]. 兰州: 中科院近代物理研究所, 2015.

[18] 孙明. 加速器驱动次临界堆物项安全分级方法研究[D]: [硕士学位论文]. 深圳: 深圳大学, 2015.

[19] 李石磊. 铅铋反应堆系统安全分析程序的开发[D]: [硕士学位论文]. 北京: 中国原子能科学研究院, 2007.

[20] 王龙. 先进核反应堆用铅铋合金热物理性能实验研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2014.

[21] 唐国有, 陈金象, 施兆民. 与核能有关的中子数据和核反应研究[J]. 核物理动态, 1996, 13(2): 13-15.

[22] 张玉山. 长寿命核废物嬗变处理的研究综述[J]. 原子核物理评论, 1997, 14(4): 251-258.

[23] 王悦. 钠冷快堆嬗变长寿命高放射性废物物理特性初步分析[D]: [硕士学位论文]. 北京: 华北电力大学, 2011.

[24] Rubbia, C., Rubio, J.A., Buono, S., Carminati, F., Fietier, N., Galvez, J., Geles, C., Kadi, Y., Klapisch, R., Mandrillon, P., Revol, J.P. and Roche, C. (1995) Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier. Design of a Fast Neutron Operated High Power Energy Amplifier, CERN/AT/95-44 (ET).

[25] Herrera-Martínez, A. (2004) Transmutation of Nuclear Waste in Accelerator-Driven Systems. PhD Thesis, University of Cambridge, Cambridge.

[26] Mueller, A.C. (2009) Prospects for Transmutation of Nuclear Waste and Associated Proton Accelerator Technology. The European Physical Journal-Special Topics, 176, 179-191.
http://dx.doi.org/10.1140/epjst/e2009-01157-8

[27] Salvatores, M., Slessarev, I. and Uematsu, M. (1994) A Global Physics Approach to Transmutation of Radioactive Nuclei. Nuclear Science and Engineering, 116, 1-18.

[28] Bowman, C.D., Arthur, E.D., Lisowski, P.W., et al. (1992) Nuclear Energy Generation and Waste Trans-mutation Using an Accelerator-Driven Intense Thermal Neutron Source. Nuclear Instrument & Methods in Physics Research A, 320, 336-367.
http://dx.doi.org/10.1016/0168-9002(92)90795-6

[29] Liu, P., Chen, X., Boccaccini, C.M., Maschek, W., Smith P. and Sobolev, V. (2007) Accelerator Driven Systems for Transmutation: Safety Consider-ations and Analyses of EFIT Type Cores. International Conference on Power Engineering-2007, Hangzhou, 23-27 October 2007, 1127-1133.

[30] Abderrahima, H.A., Kupschusa, P., Malambua, E., et al. (2001) MYRRHA: A Multi-purpose Accelerator Driven System for Research & Development. Nuclear Instruments and Methods in Physics Re-search A, 463, 487-494.
http://dx.doi.org/10.1016/S0168-9002(01)00164-4

[31] Rubbia, C., Aleixandre, J. and Andriamonje, S. (2001) A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Waste Incineration. ENEA Re-port.

[32] Mishima, K., Unesaki, H., Misawa, T., et al. (2007) Research Project on Accelerator-Driven Subcritical System Using FFAG Accelerator and Kyoto University Critical Assembly. Journal of Nuclear Science and Technology, 44, 499-503.
http://dx.doi.org/10.1080/18811248.2007.9711314

[33] Ishida, S. and Sekimoto, H. (2010) Applicability of Dy-namic Programming to the Accelerator-Driven System (ADS) Fuel Cycle Shuffling Scheme for Minor Actinide (MA) Transmutation. Annals of Nuclear Energy, 37, 406-411.
http://dx.doi.org/10.1016/j.anucene.2009.11.017

[34] Sasa, T., Tsujimoto, K., Takizuka, T. and Hideki, T. (2001) Code Development for the Design Study of the OMEGA Program Accelerator-Driven Transmutation Systems. Nuclear Instruments and Methods in Physics Research A, 463, 495-504.
http://dx.doi.org/10.1016/S0168-9002(01)00166-8

[35] Kurata, Y., Takizuka, T., Osugi, T. and Takano, H. (2002) The Accelerator Driven System Strategy in Japan. Journal of Nuclear Materials, 301, 1-7.
http://dx.doi.org/10.1016/S0022-3115(01)00731-0

[36] 赵志祥, 夏海鸿. 加速器驱动次临界系统(ADS)与核能可持续发展[J]. 中国核电, 2009, 2(3): 202-211.

[37] 中国科学院“未来先进核裂变能-ADS嬗变系统”战略性先导科技专项研究团队. 直面挑战 追梦核裂变能可持续发展——“未来先进核裂变能——ADS嬗变系统”战略性先导科技专项及进展[J]. 中国科学院院刊, 2015, 30(4): 527-534.

[38] 仇弱翔. 一体化铅铋散裂靶结构设计与分析[D]: [硕士学位论文]. 合肥: 中国科学技术大学, 2015.

[39] 赵雷. 中国散裂中子源质子加速器束流相位及能量测试系统的设计与实现[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2009.

[40] Cho, C., Tak, N. and Lee, J.C.A.Y. (2007) CFD Analysis of the HYPER Spallation Target. Annals of Nuclear Energy, 761-772.

[41] Yang, L. and Zhan, W.L. (2015) New Concept for ADS Spallation Target: Gravity-Driven Dense Granular Flow Target. Science China Technological Sciences, 58, 1705-1711.
http://dx.doi.org/10.1007/s11431-015-5894-0

分享
Top