基于机器学习方法的无线信道特征的识别与区域划分
Identification and Region Division of Wireless Channel Characteristics Based on Machine Learning Method

作者: 吴仍康 :云南财经大学统计与数学学院,云南 昆明;

关键词: 机器学习无线信道决策树模型区域划分Machine Learning Wireless Channel Decision Tree Model Region Division

摘要: 本文运用机器学习方法,对无线信道的特征建立了相应的决策树分类模型。并且对所建立的决策树模型运用真实信道数据进行了测试检验,发现分类效果较好。因此,该机器学习模型对无线信道特征的识别具有较高的准确性。进而可以运用该模型对无线信道数据进行有效的区域划分,并且该模型还具备了一定的统计学意义。

Abstract: In this paper, using the machine learning method establishes the corresponding decision tree classification model for the characteristics of wireless channel. Using the real channel data tests the decision tree model and finds the classification results are better. Therefore, this machine learning method recognition model has high accuracy for wireless channel characteristics. Then we can use the model to divide the wireless channel data into region effectively, and the model also has statistical significance.

文章引用: 吴仍康 (2016) 基于机器学习方法的无线信道特征的识别与区域划分。 天线学报, 5, 1-7. doi: 10.12677/JA.2016.51001

参考文献

[1] Rappaport, T.S. 无线通信原理与应用[M]. 第2版. 北京: 电子工业出版社, 2006.

[2] 顾来华. 机器学习在无线通信中的应用研究[D]: [硕士学位论文]. 南京: 南京大学, 2012.

[3] 胡俊. 基于支持向量机和决策树的电信通信数据分析与应用[D]: [硕士学位论文]. 广州: 广东工业大学, 2014.

[4] 王磊, 王西点, 程楠. 基于大数据技术的智能化无线网络优化体系[J]. 电信科学, 2015(12): 125-131.

[5] 王志浩. 基于在线机器学习方法的通信设备故障预警技术研究[J]. 数字技术与应用, 2015(7): 85-91.

[6] 吴喜之. 复杂数据统计方法基于R的应用[M]. 北京: 中国人民大学出版社, 2013.

分享
Top