一类有限秩Abel群的自同构
The Automorphism Groups of a Class of Finite Rank Abelian Groups

作者: 苗 俊 * , 廖 军 , 刘合国 :湖北大学数学系,湖北 武汉;

关键词: 自同构无挠Abel群有限自同构Automorphism Torsion Free Abelian Groups Finite Automorphism

摘要:
本文给出了一类有限秩的具有C2自同构的无挠Abel群。

Abstract: In this paper, we mainly study a class of finite rank torsion free abelian groups which their automorphism groups are C2.

文章引用: 苗 俊 , 廖 军 , 刘合国 (2016) 一类有限秩Abel群的自同构。 理论数学, 6, 337-341. doi: 10.12677/PM.2016.64049

参考文献

[1] Baer, R. (1937) Abelian Group without Elements of Finite Order. Duke Mathematical Journal, 3, 68-122. http://dx.doi.org/10.1215/S0012-7094-37-00308-9

[2] Thomas, S. (2003) The Classification Problem for Torsion-Free Abelian Groups of Finite Rank. Journal of the American Mathematical Society, 16, 233-258. http://dx.doi.org/10.1090/S0894-0347-02-00409-5

[3] Liao, J. and Liu, H. (2011) Automorphism Groups of Infinite Me-ta-(Locally Cyclic) Groups (in Chinese). Scientia Sinica Mathematica, 41, 613-628. http://dx.doi.org/10.1360/012011-128

[4] Hallett, J. and Hirsch, K. (1965) Torsion-Free Groups Having Finite Automorphism I. Journal of Algebra, 2, 287-298. http://dx.doi.org/10.1016/0021-8693(65)90010-4

[5] Hirsch, K. and Zassenhaus, H. (1966) Finite Automorphism Groups of Torsion-Free Groups. Journal of the London Mathematical Society, 41, 545-549. http://dx.doi.org/10.1112/jlms/s1-41.1.545

[6] Robinson, D.J.S. (1995) A Course in the Theory of Groups. Springer-Verlag, New York.

[7] Fuchs, L. (1970) Infinite Abelian Groups, Vol. I. Academic Press, New York.

分享
Top