﻿ 求解二元机翼颤振方程的切比雪夫展式方法

# 求解二元机翼颤振方程的切比雪夫展式方法Solution of Two-Dimensional Airfoil Flutter Equations Using Chebyshev Expansion Method

Abstract: The classical two-dimensional airfoil flutter equations can be established by using sinusoidal structure motion hypothesis and some kinds of aerodynamic theory. In fact, when flutter occurs, structure movement is likely to be more complex. Sinusoidal structure hypothesis is proposed merely because it is simple and easy to use. For this case, harmonic balance method cannot ap-propriate for all the higher order terms are ignored, which might lead to larger error. This paper presents a new way to establish the flutter equations: Chebyshev expansion method. This method which is suitable for quantitative questions has higher accuracy than harmonic balance, moreover, it is applicable to the analysis of those qualitative of nonlinear problems as well. Finally, an example is used to illustrate how to establish the flutter equations of two-dimension airfoil by using Chebyshev expansion method and how to find the flutter solution based on V-g method.

[1] Silva, W.A. (1997) Discrete-Time Linear and Nonlinear Aerodynamic Impulse Responses for Efficient CFD Analyses. PhD thesis, The College of William and Mary, Virginia.

[2] 陈衍茂, 刘济科, 孟光. 二元机翼非线性颤振系统的若干分析方法[J]. 振动与冲击, 2011, 30(3): 129-134.

[3] 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础[M]. 北京: 北京航空航天大学出版社, 2004.

[4] 凌复华. 非线性振动系统周期运动及其稳定性的数值研究[J]. 力学进展, 1986, 16(1): 14-27.

[5] 周桐, 徐健学. 一种新的求解非线性系统周期解方法[J]. 力学季刊, 2006, 27(4): 661-667.

[6] 李道春, 向锦武. 非线性二元机翼气动弹性近似解解析研究[J]. 航空学报, 2007, 28(5): 1080-1084.

[7] 祝小平, 陈士橹. 飞行器完全非定常气动力的一种工程计算方法[J]. 空气动力学报, 1993, 11(3): 298-302.

[8] 杨炳渊,, 宋伟力. 应用当地流活塞理论的大攻角升力面颤振气动力表达式[C]//中国土木工程学会, 中国力学学会. 第五届全国流体力学学术会议论文集: 1996年卷. 重庆: 全国流体弹性力学学术会议, 1996: 223-228.

[9] 叶正寅, 王刚, 等. 利用N-S方程模拟机翼气动弹性的一种计算方法[J]. 计算物理, 2001, 18(5): 397-401.

[10] Dowell, E.H. and Tang, D.M. (2002) Nonlinear Aeroelasticity and Unsteady Aerodynamics. AIAA Paper 2002-2003.

[11] 安效民, 徐敏, 陈士槽. 多场藕合求解非线性气动弹性的研究综述[J]. 力学进展, 2009, 39(3): 284-298.

[12] 威廉.罗登. 气动弹性力学理论与计算[M]. 北京: 航空工业出版社, 2014.

[13] 顾乐民. 预测型切比雪夫多项式[J]. 计算机工程与应用, 2012, 48(7): 34-38.

[14] 周薇, 韩景龙, 陈全龙. 一种求非线性振动系统周期解的切比雪夫级数方法[J]. 振动与冲击, 2013, 32(24): 1-5.

[15] 张雨浓, 李巍, 蔡炳煌, 等. 切比雪夫正交基神经网络的权值直接确定法[J]. 计算机仿真, 2009, 26(1): 157-161.

[16] 周薇, 韩景龙, 陈全龙. 基于切比雪夫多项式的旋翼响应及稳定性[J]. 南京航空航天大学学报, 2013, 45(5): 628- 632.

[17] 王万金, 玄志武, 张志国. 切比雪夫多项式在动态载荷识别中的应用[J]. 强度与环境, 2013, 40(6): 39-44.

Top