龙胆紫分子印迹聚合物的制备及其对Cr(III)吸附性能的研究
The Preparation of Molecularly Imprinted Polymer for Gentian Violet and Its Adsorption Performance Research on Cr(III)

作者: 朱洪喆 , 林 红 , 郭 娟 , 王 农 :兰州交通大学化学与生物工程学院,甘肃 兰州;

关键词: Cr(III)吸附量分子印迹聚合物Cr (III) Adsorption Capacity Molecularly Imprinted Polymer

摘要:
本文以龙胆紫(GV)为模板分子、丙烯酸(AA)为单体、N,N’-亚甲基双丙烯酰胺(MBA)为交联剂、偶氮二异丁腈(AIBN)为引发剂,乙腈为制孔剂,采用本体聚合法制备了龙胆紫分子印迹聚合物(GV-MIP)。利用制得的分子印迹聚合物对不同浓度的Cr(III)在不同温度下的吸附量进行研究,并与空白印迹聚合物(NMIP)及Cr(III)离子印迹聚合物(Cr-MIP)进行对比,发现GV-MIP对Cr(III)的吸附量显著高于NMIP和Cr-MIP,且随着Cr(III)浓度的增大而增大,最大吸附量为126.16 mg/g,最佳吸附温度为室温25℃。

Abstract: In this paper, gentian violet as template molecule, acrylic acid (AA) as the monomer, N,N’-methylene double acrylamide (MBA) as crosslinking agent, azodiisobutyronitrile (AIBN) as initiator, acetonitrile as the pore system, gentian violet molecularly imprinted polymer (GV-MIP) was prepared by bulk polymerization method. The adsorption capacity of Cr(III) by GV-MIP at different concentrations and temperatures were studied and compared with the non-imprinted polymer (NMIP) and Cr(III) imprinted polymer (Cr-MIP). We found that the adsorption capacity of GV-MIP for Cr(III) is significantly higher than NMIP and Cr-MIP, and increased with the concentration of Cr(III). The maximum adsorption capacity is 126.16 mg/g, and the optimal temperature is 25˚C.

文章引用: 朱洪喆 , 林 红 , 郭 娟 , 王 农 (2016) 龙胆紫分子印迹聚合物的制备及其对Cr(III)吸附性能的研究。 材料化学前沿, 4, 30-40. doi: 10.12677/AMC.2016.43004

参考文献

[1] Bereli, N., Andac, M., Sayb, R., Galaevc, I.Y. and Denizlia, A. (2008) Protein Recognition via Ion-Coordinated Molecularly Imprinted Supermacroporous Cryogels. Journal of Chromatography. A, 1190, 18-26.
http://dx.doi.org/10.1016/j.chroma.2008.02.110

[2] Li, Y.H., Yang, T., Qi, X.L., Qiao., Y.W. and Deng, A.P. (2008) Devel-opment of a Group Selective Molecularly Imprintedpolymers Based Solid Phase Extraction of Malachite Green from Fish Water and Fish Feed Samples. Science Direct, 624, 317-325.

[3] Birlik, E., Ersoz, A., Acikkalp, E., Denizli, A. and Say, R. (2007) Cr(III)-Imprinted Polymeric Beads: Sorption and Preconcentration Studies. Journal of Hazardous Materials, 140, 110-116.
http://dx.doi.org/10.1016/j.jhazmat.2006.06.141

[4] Fan, H.T. and Li, J. (2012) An Ion-Imprinted Amino-Functionalized Silica Gel Sorbent Prepared by Hydrothermal Assisted Surface Imprinting Technique for Selective Removal of Cadmium (II) from Aqueous Solution. Applied Surface Science, 258, 3815-3822.
http://dx.doi.org/10.1016/j.apsusc.2011.12.035

[5] Wang, J.J. and Liu, F. (2013) Synthesis and Application of Ion-Imprinted Interpentrating Polymer Network Gel for Selective Solid Phase Extraction of Cd2+. Chemical Engineering Journal, 242, 117-126.

[6] Moazzen, E., Ebrahimzadeh, H., Amini, M.M. and Sadeghi, O. (2013) A High Selective Ion-Imprinted Polymergrafted on a Novel Nanoporous Material for Efficient Gold Extraction. Research Article, 36, 1826-1833.

[7] 姜忠义, 吴洪. 分子印迹技术[M]. 北京: 化学工业出版社, 2003: 10-16.

[8] Wulff, G. and Sarhan, A. (1972) Use of Polymers with Enzyme-Analogous Structures for Resolution of Racemates. Angewandte Chemie—International Edition, 11, 341-344.

[9] Wullf, G. (1995) Molecular Imprinting in Cross-linked Materials with the Aid of Molecular Templates—A Way to-wards Artifcial Antibodies. Angewandte Chemie—International Edition, 34, 1912-1932.

[10] Mosbach, K. and Ramstrom, O. (1996) The Emerging Technique of Molecular Imprinting and its Future Impact on Biotechnology. Biotechnology, 14,163-170.
http://dx.doi.org/10.1038/nbt0296-163

[11] Vlatakis, G., Andersson, L. and Mosbach, K. (1993) Drug Assay Using Antibody Mimics made by Molecular Imprinting. Nature, 361,645-647.
http://dx.doi.org/10.1038/361645a0

[12] Andersson, L.I. (2000) Molecular Imprinting: Developments and Applications in the Analytical Chemistry Field. Chromatography B, 745, 3-13.
http://dx.doi.org/10.1016/S0378-4347(00)00135-3

[13] Saraji, M. and Yousefi, H. (2009) Selective Solid-Phase Extraction of Ni(II) by an Ion-Imprinted Polymer from Water Samples. Journal of Hazardous Materials, 167, 1152-1157.
http://dx.doi.org/10.1016/j.jhazmat.2009.01.111

[14] 陈芳艳, 钟宇, 唐玉斌. 炉渣去除废水中六价铬[J]. 化工环保, 2008, 28(3): 209-213.

[15] 矫彩山, 丁岩. 泡沫分离法分离处理含Cr6+废水[J]. 化工环保, 2008, 28(1): 20-23.

[16] 张志军, 李玲, 朱宏, 等. 化学沉淀法去除电镀废水中铬的实验研究[J]. 环境科学与技术, 2008, 31(7): 96-97.

[17] 雷英春. 电解法处理含铬废水[J]. 安全与环境学报, 2009, 9(2): 37-39.

[18] 李爱阳, 李大森, 胡波年, 等. 废铁屑–膜分离法处理含铬废水的研究[J]. 武汉理工大学学报, 2008, 30(9): 72-75.

[19] 范力, 张建强, 程新, 等. 离子交换法及吸附法处理含铬废水的研究进展[J]. 水处理技术, 2009, 35(1): 30-33.

[20] 吴云海, 李斌, 冯仕训, 等. 活性炭对废水中Cr(VI)、As(III)的吸附[J]. 化工环保, 2010, 30(2): 108-112.

[21] Chen, Z., Augustyn, V., Wen, J., Zhang, Y.W. and Shen, M.Q. (2011) High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. Materials Views, 23, 791-795.

[22] Del Sole, R., Scardino, A., Lazzoi, M.R., Mergola, L., Scorrano, S. and Vasapollo, G. (2013) A Molecularly Imprinted Polymer for the Determination of Neopterin. Microchim Acta, 180, 1401-1409.

[23] 边疆. 分子印迹技术去除水中 Fe(Ⅲ)和含氯有机污染物的研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学化学工艺系, 2007.

分享
Top