1961~2010年呼和浩特市区地温及季节冻土的变化特征
Variation Characteristics of Ground Temperature and Seasonal Frozen Soil in Hohhot City during 1961-2010

作者: 梁 燕 :呼和浩特市气象局,内蒙古 呼和浩特;

关键词: 呼和浩特市区地温季节性冻土气候变化特征Hohhot City Ground Temperature Seasonal Frozen Soil Climate Change Characteristics

摘要:
对呼和浩特市区50a (1961~2010年)地温及冻土气象观测资料整理和分析的基础上,研究了地温和冻土随时间的演变规律,探讨其基本事实、特征及变化原因。结果为:50年间呼和浩特市区地温升高显著(p < 0.05)、土壤封冻状态及最大冻土深度均发生较大变化,且不同年代变化幅度也不尽相同:90年代地温和土壤封冻状态迅速变化,10年代地温增温最为剧烈、土壤封冻状态变化最为显著;最大冻土深度则表现为由浅到深、再到浅的过程。地温与气温的变化不同步,地温的变化滞后于气温,春季地温升高幅度大于冬季。日最低平均地表温度和日最高平均地表温度较其它两类地温增温明显,气候倾向率分别为0.45/10a和0.43℃/10a;平均解冻日的大幅提前(基本表现为每10年提前7天左右)是引起封冻天数变化的直接原因;70~90年代为冻土深度最大的时段,最大冻土深度10年代较70~90年代约减少17 cm。

Abstract: Based on the collection and analysis of meteorological observation data of ground temperature and seasonal frozen soil in Hohhot City during 1961-2010, time-variations of ground temperature and seasonal frozen soil were studied, and the basic facts, characteristics and reasons were also discussed. The results showed that: the ground temperature rose remarkably (p < 0.05), and the soil frozen state and maximum depth of frozen ground changed greatly within the fifty years. Furthermore, their degrees of changing were different among ages. The ground temperature and soil frozen state changed rapidly in 1990s, and the most severe changes of them were occurred in the first ten years of twenty first century. The maximum depth of frozen ground represented the process as: from shallow to deep, then to shallow during 1961-2010. Changes in ground temperature and air temperature were not synchronized, and the change of ground temperature lagged behind the air temperature. The rise extent of ground temperature in spring was larger than that in winter. Daily minimum and maximum mean surface temperature were increased obviously than the other two ground temperatures, and their climate tendency rates were 0.45/10a and 0.43˚C/ 10a respectively. The substantial advance of average thawing day (about 7 days in advance every 10 years) directly affected the frozen days. 1970s to 1990s was the greatest period of maximum depth of frozen soil, and the maximum depth of frozen soil in the 10s was decreased by about 17 cm compared with the 70s-90s.

文章引用: 梁 燕 (2016) 1961~2010年呼和浩特市区地温及季节冻土的变化特征。 气候变化研究快报, 5, 149-154. doi: 10.12677/CCRL.2016.53018

参考文献

[1] IPCC (2014) Climate Change 2013: The Physical Science Basis. In: Thomas, S., Qin, D.H. and Gian-Kasper, P., Eds., Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.

[2] 黄少鹏, 安芷生. 长期地温监测在地球科学研究中的重要意义[J]. 地球环境学报, 2010, 1(1): 1-7.

[3] 陈超, 周广胜. 1961-2010年桂林气温和地温的变化特征[J]. 生态学报, 2013, 33(7): 2043-2053.

[4] 李崇银. 气候动力学引论[M]. 北京: 气象出版社, 1995: 290-296.

[5] 杜军, 李春, 廖健, 等. 拉萨近45年浅层地温的变化特征[J]. 干旱区地理, 2007, 30(6): 826-831.

[6] 杜军, 胡军, 杨勇, 等. 近45年拉萨深层地温变化趋势分析[J]. 应用气象学报, 2008, 19(1): 96-99.

[7] 庞强强, 李述训, 张文纲. 不同下垫面对多年浅土层热状况的影响分析[J]. 冰川冻土, 2009, 31(6): 1003-1010.

[8] 王秋香, 李红军, 魏荣庆, 等. 1961-2002年新疆季节冻土多年变化及突变分析[J]. 冰川冻土, 2005, 27(6): 820- 826.

[9] 陈博, 李建平. 近50年来中国季节性冻土与短时冻土的时空变化特征[J]. 大气科学, 2008, 32(3): 432-443.

[10] 丁一汇, 戴晓苏. 中国近百年来的温度变化[J]. 气象, 1994, 20(12): 19-26.

[11] 魏凤英, 曹鸿兴. 中国、北半球和全球的气温突变分析及其趋势预测研究[J]. 大气科学, 1995, 19(2): 140-148.

[12] 林而达, 许吟隆, 蒋金荷, 等. 气候变化国家评估报告(II): 气候变化的影响与适应[J]. 2006, 2(2): 51-56.

[13] 陈隆勋, 周秀骥, 李维亮, 等. 中国近80年来气候变化特征及其形成机制[J]. 气象学报, 2004, 61(5): 634-646.

[14] 刘小艳, 宁海文, 杜继稳, 等. 近56年来西安市气温突变与致灾效应[J]. 干旱区资源与环境, 2009, 23(11): 94-99.

[15] 梁燕, 魏玉荣. 呼和浩特市区1951-2010年气温变化特征的研究[J]. 干旱区资源与环境, 2016(4): 144-150.

[16] 呼和浩特市人民政府. 内蒙古呼和浩特市2010年-2020年城市总体规划[R]. 2010.

[17] 王一博, 王根绪, 常娟. 人类活动对青藏高原冻土环境的影响[J]. 冰川冻土, 2004, 26(5): 523-527.

[18] 吴青柏, 童长江. 冻土变化与青藏公路的稳定性问题[J]. 冰川冻土, 1995(4): 350-355.

[19] 裴喜春, 薛河儒. SAS及应用[M]. 北京: 中国农业出版社, 1997: 81, 121-127.

[20] 辛贤, 蒋乃华. 统计学原理[M]. 北京: 中国农业大学出版社, 2001.

[21] 杨亮平, 姜振蛟, 赵宜婷, 等. 呼和浩特市地下水水位动态变化及趋势预测研究[J]. 水文地质工程地质, 2009(4): 46-49.

分享
Top