P型Mn掺杂TiO2纳米薄膜的制备及其光电性能研究
Fabrication and Optical-Electrical Properties of P-Type Manganese-Doped Titanium Dioxide Nano-Films

作者: 刘培战 , 夏晓红 , 高 云 :湖北大学材料科学与工程学院,湖北 武汉;

关键词: Mn掺杂磁控溅射TiO2光电性能Mn Doping Magnetron Sputtering Titanium Dioxide Optical and Electrical Properties

摘要:
采用射频磁控溅射法以Mn0.8Ti1.2O3固相陶瓷靶为靶材,在石英衬底上制备了Mn掺杂TiO2纳米薄膜,通过XRD、EDS、AFM、XPS、UV-Vis-IR、两探针法和半导体霍尔效应等测试表征技术研究了Mn掺杂对TiO2薄膜的晶体结构、表面化学态和光电性能的影响。结果表明,Mn掺杂TiO2薄膜为p型半导体,随着溅射功率的增加,薄膜的光吸收向可见光方向移动,电导率增加。过量Mn掺杂会导致Mn元素的析出,光吸收性能和电学性能均变差,说明Mn掺杂是TiO2薄膜光电性能改善的根本原因。

Abstract: Manganese, as a 3d transition metal element, is considered to be one of the potential dopants for TiO2 to adjust the optical-electrical properties of TiO2, aiming to improve the utilization of sunlight, conductivity and carrier mobility of TiO2. The modified TiO2 could then be widely used in the in-telligent photo-catalytic, semiconductor sensors, solar cells, etc. In this paper, we have prepared p-type Manganese-doped TiO2 rutile nano-film on amorphous silica/quartz substrates by radio frequency magnetron sputtering method with a Mn0.8Ti1.2O3 solid ceramic target. XRD, EDS, AFM, XPS, UV-Vis-IR, Two-Probe and Hall effect measurements were used to investigate the influences of Mn doping on the crystalline structure, surface state, optical and electrical properties of TiO2 nano-film. The results have shown that Mn doping could effectively extend the light absorption re-gion of TiO2 from UV to visible light. The doping ratio was tuned by adjusting the sputtering power, the higher the sputtering power, the bigger ratio Mn was doped into TiO2. Electrical conductivity of the thin films increased with increase of Mn doping ratio. Mn precipitated when the sputtering power for Mn0.8Ti1.2O3 reached 150 W, suggesting that there is incorporation limit for Mn in TiO2 lattice. The P type Mn doped TiO2 could be used in various applications such as solar cell, gas sen-sors and photosplitting of water.

文章引用: 刘培战 , 夏晓红 , 高 云 (2016) P型Mn掺杂TiO2纳米薄膜的制备及其光电性能研究。 材料化学前沿, 4, 21-29. doi: 10.12677/AMC.2016.43003

参考文献

[1] Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
http://dx.doi.org/10.1038/238037a0

[2] Mazur, M., Wojcieszak, D., Kaczmarek, D., et al. (2015) Effect of the Nanocrystalline Structure Type on the Optical Properties of TiO2:Nd (1at.%) thin films. Optical Materials, 42, 423-429.
http://dx.doi.org/10.1016/j.optmat.2015.01.040

[3] Nkosi, S.S., Kortidis, I., Motaung, D.E., et al. (2014) An Instant Pho-to-Excited Electrons Relaxation on the Photo-Degradation Properties of TiO2−x Films. Journal of Photochemistry and Photobiology A: Chemistry, 293, 72-80.
http://dx.doi.org/10.1016/j.jphotochem.2014.07.012

[4] Patel, S.K.S., Gajbhiye, N.S. and Date, S.K. (2011) Ferromagnetism of Mn-Doped TiO2 Nanorods Synthesized by Hydrothermal Method. Journal of Alloys and Compounds, 509, S427-S430.
http://dx.doi.org/10.1016/j.jallcom.2011.01.086

[5] Xia, X.H., Lu, L., Walton, A.S., et al. (2012) Origin of Significant Visi-ble-Light Absorption Properties of Mn-Doped TiO2 Thin Films. Acta Materialia, 60, 1974-1985.
http://dx.doi.org/10.1016/j.actamat.2012.01.006

[6] Fujishima, A., Rao, T.N. and Tryk, D.A. (2000) Titanium Dioxide Photo-catalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-2.
http://dx.doi.org/10.1016/S1389-5567(00)00002-2

[7] Yu Y., Wang, J., Parr J.F., et al. (2012) Preparation and Properties of TiO2/Fumed Silica Composite Photocatalytic Materials. Procedia Engineering, 27, 448-456.
http://dx.doi.org/10.1016/j.proeng.2011.12.473

[8] Kim, D.H., Han, G.S., Seong, W.M., et al. (2015) Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells. ChemSusChem, 8, 2392-2398.
http://dx.doi.org/10.1002/cssc.201403478

[9] Bao, N., Feng, X. and Grimes, C.A. (2012) Self-Organized One-Dimensional TiO2 Nanotube/Nanowire Array Films for Use in Excitonic Solar Cells: A Review. Journal of Nanotechnology, 2012, 1-27.
http://dx.doi.org/10.1155/2012/645931

[10] Ojani, R., Safshekan, S. and Raoof, J.B. (2013) Photoelectrochemical Oxidation of Hydrazine on TiO2 Modified Titanium Electrode: Its Application for Detection of Hydrazine. Journal of Solid State Electrochemistry, 18, 779-783.
http://dx.doi.org/10.1007/s10008-013-2321-y

[11] Trenczek-Zajac, A., Pamula, E., Radecka, M., et al. (2012) Thin Films of TiO2:N for Photo-Electrochemical Applications. Journal of Nanoscience and Nanotechnology, 12, 4703-4709.
http://dx.doi.org/10.1166/jnn.2012.4937

[12] Chao, S. and Dogan, F. (2011) Effects of Manganese Doping on the Dielectric Properties of Titanium Dioxide Ceramics. Journal of the American Ceramic Society, 94, 179-186.
http://dx.doi.org/10.1111/j.1551-2916.2010.04039.x

[13] Novotná, P., Zita, J., Krýsa, J., et al. (2008) Two-Component Trans-parent TiO2/SiO2 and TiO2/PDMS Films as Efficient Photocatalysts for Environmental Cleaning. Applied Catalysis B: Environmental, 79, 179-185.
http://dx.doi.org/10.1016/j.apcatb.2007.10.012

[14] Chen X.B. and Mao. S.S. (2007) Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 107, 2891-2959.
http://dx.doi.org/10.1021/cr0500535

[15] Naldoni, A., Allieta, M., Santangelo, S., et al. (2012) Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. Journal of the American Chemical Society, 134, 7600-7603.
http://dx.doi.org/10.1021/ja3012676

[16] Dang, B.H.Q., Rahman, M., MacElroy, D. and Dowling, D.P. (2012) Evaluation of Microwave Plasma Oxidation Treatments for the Fabrication of Photoactive Un-Doped and Carbon-Doped TiO2 Coatings. Surface and Coatings Technology, 206, 4113-4118.
http://dx.doi.org/10.1016/j.surfcoat.2012.04.003

[17] Lee, S.H., Yamasue, E., Okumura, H. and Ishihara, K.N. (2015) Effect of Substrate Roughness and Working Pressure on Photocatalyst of N-Doped TiOx Films Prepared by Reactive Sputtering with Air. Applied Surface Science, 324, 339- 348.
http://dx.doi.org/10.1016/j.apsusc.2014.10.173

[18] Li, B.J., Huang, L.J., Ren, N.F. and Zhou, M. (2014) Titanium Dioxide-Coated Fluorine-Doped Tin Oxide Thin Films for Improving Overall Photoelectric Property. Applied Surface Science, 290, 80-85.
http://dx.doi.org/10.1016/j.apsusc.2013.11.001

[19] Comsup, N., Panpranot, J. and Praserthdam, P. (2010) The Effect of Phos-phorous Precursor on the CO Oxidation Activity of P-Modified TiO2 Supported Ag Catalysts. Catalysis Communications, 11, 1238-1243.
http://dx.doi.org/10.1016/j.catcom.2010.06.014

[20] Wang, Y.P., Li, J., Peng, P., Lu, T.H. and Wang, L.J. (2008) Preparation of S-TiO2 Photocatalyst and Photodegradation of L-Acid under Visible Light. Applied Surface Science, 254, 5276-5280.
http://dx.doi.org/10.1016/j.apsusc.2008.02.050

[21] Lu, L., Xia, X.H., Luo, J.K. and Shao, G. (2012) Mn-Doped TiO2 Thin Films with Significantly Improved Optical and Electrical Properties. Journal of Physics D: Applied Physics, 45, 485102.
http://dx.doi.org/10.1088/0022-3727/45/48/485102

[22] Nair, P.B., Justinvictor, V.B., Daniel, G.P., et al. (2014) Structural, Optical, Photoluminescence and Photocatalytic Investigations on Fe Doped TiO2 Thin Films. Thin Solid Films, 550, 121-127.
http://dx.doi.org/10.1016/j.tsf.2013.10.112

[23] Castro, M.V., Rebouta, L., Alpuim, P., et al. (2014) Optimisation of Surface Treatments of TiO2:Nb Transparent Conductive Coatings by a Post-Hot-Wire Annealing in a Reducing H2 Atmosphere. Thin Solid Films, 550, 404-412.
http://dx.doi.org/10.1016/j.tsf.2013.11.044

[24] Jing, L.Q., Xin, B.F., Yuan, F.L., Xue, L.P., Wang, B.Q. and Fu, H.G. (2006) Effects of Surface Oxygen Vacancies on Photophysical and Photochemical Processes of Zn-Doped TiO2 Nanoparticles and Their Relationships. The Journal of Physical Chemistry B, 110, 17860-17865.
http://dx.doi.org/10.1021/jp063148z

[25] Hajjaji, A., Atyaoui, A., Trabelsi, K., et al. (2014) Cr-Doped TiO2 Thin Films Prepared by Means of a Magnetron Co-Sputtering Process: Photo-catalytic Application. American Journal of Analytical Chemistry, 5, 473-482.
http://dx.doi.org/10.4236/ajac.2014.58056

[26] Buha, J. (2013) Photoluminescence Study of Carbon Doped and Hydrogen Co-Doped TiO2 Thin Films. Thin Solid Films, 545, 234-240.
http://dx.doi.org/10.1016/j.tsf.2013.08.049

[27] Ali, A., Yassitepe, E., Ruzybayev, I., Shah, S.I. and Bhatti, A.S. (2012) Improvement of (004) Texturing by Slow Growth of Nd Doped TiO2 Films. Journal of Applied Physics, 112, 113505.
http://dx.doi.org/10.1063/1.4767361

[28] Johannsen, S.R., Lauridsen, L.R., Julsgaard, B., Neuvonen, P.T., Rama, S.K. and Larsen, A.N. (2014) Optimization of Er3+-Doped TiO2-Thin Films for Infrared Light Up-Conversion. Thin Solid Films, 550, 499-503.
http://dx.doi.org/10.1016/j.tsf.2013.10.123

[29] Yildirim, O., Butterling, M., Cornelius, S., et al. (2014) Ferromagnetism and Structural Defects in V-Doped Titanium Dioxide. Physica Status Solidi (c), 11, 1106-1109.
http://dx.doi.org/10.1002/pssc.201300722

[30] Sornsanit, K., Horprathum, M., Chananonnawathorn, C., et al. (2013) Fabrication and Characterization of Antibacterial Ag-TiO2 Thin Films Prepared by DC Magnetron Co-Sputtering Technique. Advanced Materials Research, 770, 221- 224.
http://dx.doi.org/10.4028/www.scientific.net/AMR.770.221

[31] Hamedani, H.A., Allam, N.K., El-Sayed, M.A., Khaleel, M.A., Garmestani, H. and Alamgir, F.M. (2014) An Experimental Insight into the Structural and Electronic Characteristics of Strontium-Doped Titanium Dioxide Nanotube Arrays. Advanced Functional Materials, 24, 6783-6796.
http://dx.doi.org/10.1002/adfm.201401760

[32] Matsumoto, Y., Katayama, M., Takatoshi, A.B.E., et al. (2010) Chemical Trend of Fermi-Level Shift in Transition Metal-Doped TiO2 Film. Journal of the Ceramic Society of Japan, 118, 993-996.
http://dx.doi.org/10.2109/jcersj2.118.993

[33] Tsutomu, U., Tetsuya, Y., Hisayoshi I. and Keisuke, A. (2002) Analysis of Elec-tronic Structure of 3d Transition Metal-Doped TiO2 Based on Band Calculations. Journal of Physics and Chemistry of Solids, 63, 1909-1920.
http://dx.doi.org/10.1016/S0022-3697(02)00177-4

[34] Li, X., Wu, S., Hu, P., et al. (2009) Structures and Magnetic Properties of P-Type Mn:TiO2 Dilute Magnetic Semiconductor Thin Films. Journal of Applied Physics, 106, 043913.
http://dx.doi.org/10.1063/1.3204493

[35] Shao, G. (2008) Electronic Structures of Manganese-Doped Rutile TiO2 from First Principles. The Journal of Physical Chemistry C, 112, 18677-18685.
http://dx.doi.org/10.1021/jp8043797

[36] Deng, Q.R., Xia, X.H., Guo, M.L., Gao, Y. and Shao, G. (2011) Mn-Doped TiO2 Nanopowders with Remarkable Visible Light Photocatalytic Activity. Materials Letters, 65, 2051-2054.
http://dx.doi.org/10.1016/j.matlet.2011.04.010

[37] Moudler, J.F., Stickle, W.F., Sobol P.E., et al. (1992) Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie.

分享
Top