利用离散余弦变换与Wallis的人脸光照处理算法
Face Illumination Processing Using Discrete Cosine Transform and Wallis Algorithm

作者: 杨志军 * , 何 雪 , 熊文怡 , 聂祥飞 :重庆三峡学院电子与信息工程学院,重庆;

关键词: 人脸光照处理离散余弦变换Wallis算法人脸识别Face Illumination Processing Discrete Cosine Transform Wallis Face Recognition

摘要:
本文提出了一种基于离散余弦变换与Wallis的人脸光照处理算法,该算法首先将人脸图像变换到对数域,在对数域中计算离散余弦变换(DCT),舍弃部分低频DCT系数,再计算其离散余弦反变换。然后用Wallis算法对人脸图像的高频部分进行增强。在人脸识别阶段,采用主成分分析法(PCA)提取人脸特征,运用基于余弦距离的最近邻分类器进行分类判别。在Yale B正面人脸库中的实验结果表明,本文提出的方法可以削弱人脸光照的影响,合理选择相关参数,人脸识别率能达到好的效果。

Abstract: In this paper, a novel approach based on discrete cosine transform (DCT) and Wallis for face illumination is discussed. Firstly, the DCT is calculated in logarithm domain for face image. Some low-frequency coefficients are discarded in zigzag pattern. Secondly, after inverse discrete cosine transform (IDCT), the Wallis algorithm is used to enhance the high-frequency detail of face image. Thirdly, the principal component analysis (PCA) and the nearest neighborhood classifier using cosine distance are adopted for face recognition. The experiment results on Yale B frontal face database demonstrate that the presented algorithm can decrease the influence of face illumination. The face recognition rate has a good effect when some parameters are chosen properly.

文章引用: 杨志军 , 何 雪 , 熊文怡 , 聂祥飞 (2016) 利用离散余弦变换与Wallis的人脸光照处理算法。 图像与信号处理, 5, 81-87. doi: 10.12677/JISP.2016.53011

参考文献

[1] Ochoa-Villegas, M.A., Nolazco-Flores, J.A., Barron-Cano, O., et al. (2015) Addressing the Illumination Challenge in Two-Dimensional Face Recognition: A Survey. IET Computer Vision, 9, 978-992. http://dx.doi.org/10.1049/iet-cvi.2014.0086

[2] Kaymak, Ç., Sarıcı, R. and Uçar, A. (2015) Illumination Invariant Face Recognition Using Principal Component Analysis—An Overview. Machine Vision and Mechatronics in Practice. Springer Berlin Heidelberg, 269-285.

[3] Pai, A.G., Fernandes, S.L., Nayak, K., et al. (2015) Recognizing Human Faces under Varying Degree of Illumination: A Comprehensive Survey. International Conference on Electronics and Communication Systems. IEEE, Coimbatore, 26-27 February 2015, 577-582.

[4] Shah, J.H., Sharif, M., Raza, M., et al. (2015) Robust Face Recognition Technique under Varying Illumination. Journal of Applied Research & Technology, 13, 97-105. http://dx.doi.org/10.1016/S1665-6423(15)30008-0

[5] Biglari, M., Mirzaei, F. and Ebrahimpour-Komeh, H. (2013) Illumination Invariant Face Recognition Using SQI and Weighted LBP Histogram. First Iranian Conference on Pattern Recognition and Image Analysis (PRIA), Birjand, 6-8 March 2013, 1-7.

[6] Ramaiah, N.P., Ijjina, E.P. and Mohan, C.K. (2015) Illumination Invariant Face Recognition Using Convolutional Neural Networks. 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kozhikode, 19-21 February 2015, 1-4.

[7] Shermina, J. (2011) Illumination Invariant Face Recognition Using Discrete Cosine Transform and Principal Component Analysis. 2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT), Tamil Nadu, 23-24 March 2011, 826-830.

[8] Manolovay, A., Tonchev, K., Boumbarov, O., et al. (2011) Recognition of Facial Images with Subspace Projection and Dissimilarity Representation. IEEE 6th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 1, 444-449.

[9] Chen, J., Xia, C., Ying, H., et al. (2013) Using Facial Symmetry in the Illumination Cone Based 3D Face Reconstruction. IEEE International Conference on Image Processing, Melbourne, 15-18 September 2013, 3700-3704.

[10] Elaiwat, S., Bennamoun, M., Boussaid, F., et al. (2014) 3-D Face Recognition Using Curvelet Local Features. IEEE Signal Processing Letters, 21, 172-175. http://dx.doi.org/10.1109/LSP.2013.2295119

[11] Faraji, M.R. and Qi, X. (2014) Face Recognition under Varying Illumination Based on Adaptive Homomorphic Eight Local Directional Patterns. IET Computer Vision, 9, 390-399. http://dx.doi.org/10.1049/iet-cvi.2014.0200

[12] Chen, W.L., Er, M.J. and Wu, S.Q. (2006) Illumination Compensation and Normalization for Robust Face Recognition Using Discrete Cosine Transform in Logarithm Domain. IEEE Transaction on Systems, Man, and Cybernetics, Part B: Cybernetics, 36, 458-466. http://dx.doi.org/10.1109/TSMCB.2005.857353

[13] Lee, P., Wu, S. and Hung, Y. (2012) Illumination Compensation Using Oriented Local Histogram Equalization and Its Application to Face Recognition. IEEE Transactions on Image Processing, 21, 4290-4289. http://dx.doi.org/10.1109/TIP.2012.2202670

[14] Tan, X. and Triggs, B. (2010) Enhanced Local Texture Feature Sets for Face Recognition under Difficult Lighting Conditions. Transactions on Image Processing, 19, 4177-4189.

[15] Vu, N. and Caplier, A. (2009) Illumination-Robust Face Recognition Using Retina Modeling. 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, 7-10 November 2009, 3289-3292.

分享
Top