基于火柴棍模型的煤体迂曲度理论研究
Theoretical Research on Tortuosity of Coal Based on the Matchstick Model

作者: 刘 昂 , 黄艳涛 , 蒋一峰 :中国矿业大学(北京)资源与安全工程学院,北京;

关键词: 多孔介质煤体迂曲度初始迂曲度Klinkenberg系数修正迂曲度Porous Media Tortuosity of Coal Initial Tortuosity Klinkenberg Coefficient Modified Tortuosity

摘要:
为了更好的研究煤体孔裂隙结构特征以及求取相关表征参数,本文基于理想的火柴棍模型,结合达西定律和修正的泊谡叶方程,经过严格的理论推导,得到了适用于煤体的迂曲度理论表达式,并以初始迂曲度为参考推导了迂曲度的修正式,同时结合Klinkenberg系数给出了一种初始迂曲度的计算方法。研究结果为求取表征煤体孔裂隙特征的相关参数提供了可行的方法,具有一定积极意义。

Abstract: In order to research the structure characteristics of pores and fissures and seek the related cha-racterization parameter of coal, this article based on the ideal matchstick model, combined the Darcy equation and the modified Poiseuille equation and deduced the theoretical expression of tortuosity applicable to coal through strict theoretical derivation. Then the modified expression of tortuosity was deduced in reference of the initial tortuosity, at the same time, we got a calculation method of initial tortuosity by combing the Klinkenberg coefficient. The research results provide a feasible method for calculating the related parameters representing the features of pores and fissures, and have positive effect.

文章引用: 刘 昂 , 黄艳涛 , 蒋一峰 (2016) 基于火柴棍模型的煤体迂曲度理论研究。 矿山工程, 4, 72-78. doi: 10.12677/ME.2016.43012

参考文献

[1] Bear, J. (1972) Dynamics of Fluids in Porous Media. Elsevier, New York.

[2] Christopher, R.H. and Middleman, S. (1965) Power Law Flow through a Packed Tube. Industrial & Engineering Chemistry Fundamentals, 4, 422-426.
http://dx.doi.org/10.1021/i160016a011

[3] Wu, J.S. and Yu, B.M. (2007) A Fractal Resistance Model for Flow through Porous Media. International Journal of Heat and Mass Transfer, 50, 3925-3932.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.02.009

[4] Yu, B.M. and Li, J.H. (2004) A Geometry Model for Tortuosity of Flow Path in Porous Media. Chinese Physics Letters, 21, 1569-1571.
http://dx.doi.org/10.1088/0256-307X/21/8/044

[5] Du Plessis, J.P. (1994) Analytical Quantification of Coefficients in the Ergun Equation for Fluid Friction in a Packed Bed. Transport in Porous Media, 16, 189-207.
http://dx.doi.org/10.1007/BF00617551

[6] Liu, S., Afacan, A. and Masliyah, J. (1994) Steady Incompressible Laminar Flow in Porous Media. Chemical Engineering Science, 49, 3565-3586.
http://dx.doi.org/10.1016/0009-2509(94)00168-5

[7] Tang, G.H. and Lu, Y.B. (2014) A Resistance Model for Newtonian and Power-Law Non-Newtonian Fluid Transport in Porous Media. Transport in Porous Media, 104, 435-449.
http://dx.doi.org/10.1007/s11242-014-0342-3

[8] 彭安兰, 蒋明煊. 用毛管压力资料计算迂曲度的方法探讨[J]. 石油勘探与开发, 1986(1): 55-59.

[9] 李瑞琪, 毛伟, 吉庆生. 迂曲度计算方法[J]. 试验研究, 2012, 31(5): 41.

[10] 吕道平. 多孔介质中水力学迂曲度因子的求取及应用[J]. 新疆石油地质, 2000, 21(6): 515-517.

[11] Ma, Q., Harpalani, S. and Liu, S.M. (2011) A Simplified Permeability Model for Coalbed Methane Reservoirs Based on Matchstick Strain and Constant Volume Theory. International Journal of Coal Geology, 85, 43-48.
http://dx.doi.org/10.1016/j.coal.2010.09.007

[12] Seidle, J., Jeansonne, M. and Erickson, D. (1992) Application of Matchstick Geometry to Stress Dependent Permeability in Coals. Proceedings of the SPE Rocky Mountain Regional Meeting, Casper, Wyoming, 18-21 May 1992, Document ID: SPE-24361-MS.
http://dx.doi.org/10.2118/24361-MS

[13] Gu, F.G. and Chalaturny, K.R. (2010) Permeability and Porosity Models Considering Anisotropy and Discontinuity of Coalbeds and Application in Coupled Simulation. Journal of Petroleum Science and Engineering, 74, 113-131.
http://dx.doi.org/10.1016/j.petrol.2010.09.002

[14] Reiss, L.H. (1980) The Reservoir Engineering Aspects of Fractured Formations. Editions Technip, France.

[15] Wang, K., Zang, J., Wang, G.D. and Zhou, A.T. (2014) Anisotropic Permeability Evolution of Coal with effective Stress Variation and Gas Sorption: Model Development and Analysis. International Journal of Coal Geology, 130, 53- 65.
http://dx.doi.org/10.1016/j.coal.2014.05.006

[16] 尹光志, 李铭辉, 李生舟, 等. 基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报, 2013, 38(4): 535-541.

[17] 魏建平, 秦恒洁, 王登科, 等. 含瓦斯煤渗透率动态演化模型[J]. 煤炭学报, 2015, 40(7): 1555-1561.

[18] 陈金刚, 徐平, 赖永星. 煤储层渗透率动态变化效应研究[J]. 岩土力学, 2011, 32(8): 2512-2516.

[19] 邓泽, 康永尚, 刘洪林, 等. 开发过程中煤储层渗透率动态变化特征[J]. 煤炭学报, 2009, 4(7): 947-951.

[20] Palmer, I. and Mansoori, J. (1998) How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model. SPE Reservoir Evaluation & Engineering, 1, 539-544.
http://dx.doi.org/10.2118/52607-PA

[21] 林柏泉. 含瓦斯煤体渗透率的探讨[J]. 煤矿安全, 1988(12): 15-20.

[22] 周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1997.

[23] 曹树刚, 李勇, 郭平, 等. 瓦斯压力对原煤渗透特性的影响[J]. 煤炭学报, 2010, 35(4): 595-599.

[24] 王登科, 刘建, 尹光志, 等. 突出危险煤渗透性变化的影响因素探讨[J]. 岩土力学, 2010, 31(11): 3469-3474.

[25] 王登科, 魏建平, 付启勇, 等. 基于Klinkenberg效应影响的煤体瓦斯渗流规律及其渗透率计算方法[J]. 煤炭学报, 2014, 39(10): 2030-2036.

[26] Wu, Y.S., Pruess, K. and Persoff, P. (1998) Gas Flow in Porous Media with Klinkenberg Effects. Transport in Porous Media, 32, 117-137.
http://dx.doi.org/10.2118/52607-PA

[27] Klinkenberg, L.J. (1941) The Permeability of Porous Media to Liquid and Gases. API 11th Mid Year Meeting, API Drilling and Production Practice, Tulsa, May 1941, 200-213.

[28] Randolph, P.L., Soeder, D.J. and Chowdiah, P. (1984) Porosity and Permeability of Tight Sands. SPE/DOE/GRI Unconventional Gas Recovery Symposium, Pittsburgh, 13-15 May 1984, SPE 12836.

[29] Ertekin, T., King, G.A. and Schwerer, F.C. (1986) Dynamic Gas Slippage: A Unique Dual-Mechanism Approach to the Flow of Gas in Tight Formations. SPE Formation Evaluation, 1, 43-52.
http://dx.doi.org/10.2118/52607-PA

分享
Top