流体剪切与絮团的粘性分维数
Fluid-Shearing and Viscous Fractal sDimension of Flocs

作者: 邢 军 , 丁仕强 , 刘正宁 , 徐继润 :大连大学,环境与化学工程学院,辽宁 大连;

关键词: 絮凝表观粘度粘性分维数特征粘度絮团组成流体剪切Flocculation Apparent Viscosity Viscous Fractal Dimension Specific Viscosity Floc Composition Fluid Shearing

摘要:
本文在已建立的絮凝体系表观粘度与不同形态絮团粘性分维数关系的理论模型基础上,实验考查了絮凝平衡状态下单体颗粒、线状絮团、面状絮团及体状絮团的粘性分维数、特征粘度、絮团的粘性组成等随流体剪切速率的变化情况。研究表明,流体剪切作用的强化增大了线状、面状及体状絮团的粘性分维数,但所有絮团的特征粘度与流体剪切速率无关,线状、面状及体状絮团的特征粘度彼此之间依次具有一个数量级的差异。所有絮团的粘性组成都与剪切速率有关,也与固相浓度有关,且不同絮团的组成具有不同的变化态势。文中对主要的实验结果从絮团形成与碎裂的双重机制给予了定性解释。

Abstract: On the basis of the model developed by authors to relate the apparent viscosity of flocculated sus-pensions with the viscous fractal dimensions of flocs being of various morphologies, the fractal dimensions, specific viscosities and compositions of the single particles, linear flocs, planar flocs and volumetric flocs are investigated experimentally at different fluid shearing conditions and stable flocculation progress. The results show that the viscous fractal dimensions of linear, planar and volumetric flocs increase rapidly at first and gradually then with the reinforcement of shearing rate, but the specific viscosities of all kind of flocs including single particles are independent of the shearing rate, and the specific viscosities of linear, planar and volumetric flocs differ from each other by a order of magnitude in turn. The viscous compositions of all flocs and single particles are the function of both shearing rate and solid concentration, and different composition behaviors are revealed. The main experimental results are analyzed and explained qualitatively by considering the double mechanism of floc formation and breakage resulted from the fluid shearing.

文章引用: 邢 军 , 丁仕强 , 刘正宁 , 徐继润 (2016) 流体剪切与絮团的粘性分维数。 水污染及处理, 4, 55-62. doi: 10.12677/WPT.2016.43008

参考文献

[1] Smoluchowski, M. (1917) Versuch einer Mathematischen Theorie der Koagulationskinetik Kolloider LoÈ sungen. Zeitschrift für Physikalische Chemie, 92, 129-168.

[2] Thomas, D.N., Judd, S.J. and Fawcett, N. (1999) Flocculation Modelling: A Review. Water Research, 33, 1579-1592.
http://dx.doi.org/10.1016/S0043-1354(98)00392-3

[3] Yuan, Y. and Farnood, R.R. (2010) Strength and Breakage of Activated Sludge Flocs. Powder Technology, 199, 111- 119.
http://dx.doi.org/10.1016/j.powtec.2009.11.021

[4] Li, D.-H. and Ganczar-czyk, J. (1989) Fractal Geometry of Particle Aggregates Generated in Water and Wastewater Treatment Processes. Environmental Science & Technology, 23, 1385-1389.
http://dx.doi.org/10.1021/es00069a009

[5] Tambo, N. and Hozumi, H. (1979) Physical Characteristics of Flocs-II. Strength of Floc. Water Research, 13, 421.
http://dx.doi.org/10.1016/0043-1354(79)90034-4

[6] Li, X. and Logan, B.E. (1997) Collision Frequencies between Fractal Aggregates and Small Particles in a Turbulently Sheared Fluid. Environmental Science & Technology, 31, 1237-1242.
http://dx.doi.org/10.1021/es960772o

[7] Wang, D.S., Wu, R.B., Jiang, Y.Z. and Chow, C.W.K. (2011) Characterization of Floc Structure and Strength: Role of Changing Shear Rates under Various Coagulation Mechanisms. Colloids and Surfaces A: Phys-icochemical and Engineering Aspects, 379, 36-42.
http://dx.doi.org/10.1016/j.colsurfa.2010.11.048

[8] Spicer, P.T., Pratsinis, S.E., Raper, J., Amal, R., Bushell, G. and Meesters, G. (1998) Effect of Shear Schedule on Particle Size, Density and Structure during Flocculation in Stirred Tanks. Powder Technology, 97, 26-34.
http://dx.doi.org/10.1016/S0032-5910(97)03389-5

[9] Jarvis, P., Jefferson, B. and Parsons, S.A. (2005) Breakage, Regrowth, and Fractal Nature of Natural Organic Matter Flocs. Environmental Science & Technology, 39, 2307-2314.
http://dx.doi.org/10.1021/es048854x

[10] Zhu, Z.F., Yu, J.S., Wang, H.R., Dou, J. and Wang, C. (2015) Fractal Dimension of Cohesive Sediment Flocs at Steady State under Seven Shear Flow Conditions. Water, 7, 4385-4408.
http://dx.doi.org/10.3390/w7084385

[11] 邢军, 李庆娜, 丁仕强, 刘正宁, 徐继润. 絮团粘性分维数的概念及其分析模型[J]. 环境工程学报, 2014, 8(12): 5174-5178.

[12] Xing, J., Ding, S.Q., Liu, Z.N. and Xu, J.R. (2015) A New Description of the Fractal Dimension of Particle Aggregates in Liquid Medium. Particle and Aerosol Research, 11, 99-105.

[13] 邢军, 丁仕强, 刘正宁, 徐继润. 絮团形态的动态演变[J]. 环境工程学报(待发表).

[14] Meakin, P. (1988) Fractal Aggregates. Advances in Colloid and Interface Science, 28, 249-331.
http://dx.doi.org/10.1016/0001-8686(87)80016-7

[15] Li, X.Y. and Ruby, P.C.L. (2005) Determination of the Fractal Dimension of Microbial Flocs from the Change in Their Size Distribution after Breakage. Environmental Science & Technology, 39, 2731-2735.
http://dx.doi.org/10.1021/es049177+

[16] Wu, R.M., Lee, D.J., Waite, T.D. and Guan, J. (2002) Multilevel Structure of Sludge Flocs. Journal of Colloid and Interface Science, 252, 383-392.
http://dx.doi.org/10.1006/jcis.2002.8494

[17] Einstein, A. (1956) Investigation on Theory of Brownian Movement. In: Furth Dover, R., Ed., New York.

分享
Top