颗粒/纳米复合材料细观损伤及本构关系分析
Micro-Damage and Constitutive Relation Analysis of Particulate-Reinforced Composites

作者: 卞立春 , 魏金币 , 潘 静 , 赵辉川 , 金 杰 :燕山大学,工程力学系,河北 秦皇岛;

关键词: 颗粒复合材料弱化表面体积分数等效刚度表面脱黏Particle Composite Weakened Interface Volume Fraction Effective Stiffness Surface Debonding

摘要:
本文得到了带有弱化表面的颗粒增强复合材料的本构模型,其可以描述颗粒的脱黏破坏以及基体的塑性和颗粒对复合材料损伤的影响。此损伤模型是基于Eshelby等效夹杂方法和自洽方法,假设基体、完整颗粒和带有弱化表面的颗粒都属于复合材料的夹杂体,根据Eshelby细观力学的方法,通过数值计算估算出三相颗粒增强复合材料的有效弹性模量。得出在复合材料损伤过程中,颗粒体积分数变化对颗粒复合材料有效刚度的影响,并且通过分析计算说明颗粒的体积分数与尺寸对复合材料应力–应变关系的影响。

Abstract: This paper deals with a constitutive model of particulate-reinforced composites (PRCs) with weakened interfaces, which can describe the evolution of debonding damage, matrix plasticity and particle effects on deformation and damage. This damage model is based on the Eshelby’s equivalent inclusion method and self-consistent method. It is assumed that the intact particle, the particle with a weakened interface and matrix are all inclusions of composites. According to the Eshelby’s micromechanics method, the effective elastic modulus of three-phase composites is estimated through a numerical calculation. The influence of particle volume fraction change on the effective stiffness of particle composites can be predicted during the material damage process. This article also illustrates the influences of particle volume fraction and size on the stress-strain relation of composites.

文章引用: 卞立春 , 魏金币 , 潘 静 , 赵辉川 , 金 杰 (2016) 颗粒/纳米复合材料细观损伤及本构关系分析。 力学研究, 5, 63-74. doi: 10.12677/IJM.2016.52007

参考文献

[1] 杜善义, 王彪. 复合材料细观力学[M]. 北京: 科学出版社, 1997: 6-58.

[2] Duan, H.L., et al. (2007) A Unified Scheme for Prediction of Effective Moduli of Multiphase Composites with Interface Effects, Part I: Theoretical framework. Mechanics of Materials, 39, 81-93.
http://dx.doi.org/10.1016/j.mechmat.2006.02.009

[3] Togho, K., Itoh, Y. and Shimamura, Y.A. (2010) A Constitutive Model of Particulate-Reinforced Composites Taking Account of Particle Size Effects and Damage Evolution. Composites: Part A. Applied Science and Manufacturing, 42, 313-321.

[4] Togho, K. and Weng, G.J. (1994) A Progress Damage Mechanics in Particle-Reinforced Metal-Matrix Composites under High Triaxial Tension. Journal of Engineering Materials and Technology, 116, 414-420.
http://dx.doi.org/10.1115/1.2904307

[5] Tohgo, K. and Chou, T.W. (1996) Incremental Theory of Particulate-Reinforced Composites Including Debonding Damage. JSME International Journal, 39, 389-397.

[6] Bian, L.C. and Wang, Q. (2012) A Modified Micro-Mechanics Model for Estimating Effective Elastic Modulus of Concrete. Construction and Building Materials, 36, 572-577.
http://dx.doi.org/10.1016/j.conbuildmat.2012.06.018

[7] Wang, Q., et al. (2012) Effective Elastic Modulus and Micro-Structure Damage of Particle-Reinforced Composites. Composite Structures, 94, 2218-2226.
http://dx.doi.org/10.1016/j.compstruct.2012.02.003

[8] Niordson, C.F. and Tvergaard, V. (2001) Nonlocal Plasticity Effects on the Tensile Properties of a Metal Matrix Composite. European Journal of Mechanics A-Solids, 50, 149-160.

[9] Nan, C.W. and Clarke, D.R. (1996) The Influence of Particle Size and Particle Fracture on the Elastic/Plastic Deformation of Metal Matrix Composites. Acta Materialia, 44, 3801.
http://dx.doi.org/10.1016/1359-6454(96)00008-0

[10] Prangnell, P.B., et al. (1994) The Deformation of Discontinuously Reinforced MMcs-II. The Elastic Response. Acta Metallurgica et Materialia, 40, 2547.
http://dx.doi.org/10.1016/0956-7151(94)90476-6

[11] Zhao, Y.H. and Weng, G.J. (1997) Transversely Isotropic Moduli of Two Partially Debonded Composites. International Journal of Solids and Structures, 34, 493-507.
http://dx.doi.org/10.1016/S0020-7683(96)00027-3

[12] Ju, J.W. and Lee, H.K. (2001) A Micromechanical Damage Model for Effective Elastoplastic Behavior of Partially Debonded Ductile Matrix Composites. International Journal of Solids and Structures, 38, 6307-6332.
http://dx.doi.org/10.1016/S0020-7683(01)00124-X

[13] Zhong, Z., Yu, X.B. and Meguid, S.A. (2004) 3D Micromechanical Modeling of Particulate Composite Materials with Inperfect Interface. International Journal of Multiscale Computational Engineering, 2, 172-187.
http://dx.doi.org/10.1615/IntJMultCompEng.v2.i1.60

[14] Qu, J. (1993) Eshelby Tensor for an Elastic Inclusion with Slightly Weakened Interface. Journal of Applied Mechanics, 60, 1048-1050.
http://dx.doi.org/10.1115/1.2900974

[15] Qu, J. (1993) The Effect of Slightly Weakened Interfaces on the Overall Elastic Properties of Composite Materials. Mechanics of Materials, 14, 269-281.
http://dx.doi.org/10.1016/0167-6636(93)90082-3

[16] Bian, L.C., Cheng, Y. and Li, H.J. (2013) A Statiscal Study on the Stress-Strain Relation of Progressively Debonded Composites. Construction and Building Materials, 49, 257-261.
http://dx.doi.org/10.1016/j.conbuildmat.2013.08.029

[17] Lee, H.K. (2001) A Computational Approach to the Investigation of Impact Damage Evolution in Discontinuously Reinforced Fiber Composites. Computational Mechanics, 27, 504-512.
http://dx.doi.org/10.1007/s004660100262

[18] Weibull, W. (1951) A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, 18, 293- 297.

[19] Eshelby, J.D. (1957) The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems. Proceedings of the Royal Society A, 241, 376-396.
http://dx.doi.org/10.1098/rspa.1957.0133

[20] Arsenault, R.J. and Shi, N. (1986) Dislocation Generation Due to Differences between the Coefficients of Thermal Expansion. Materials Science and Engineering, 81, 175-187.
http://dx.doi.org/10.1016/0025-5416(86)90261-2

分享
Top