Advances in LRRFIP Family

作者: 赵晓婷 , 汲广东 :中国海洋大学海洋生命学院,海洋生物多样性与进化研究所,山东 青岛;

关键词: LRRFIP转录抑制子细胞骨架重排胞质核酸感受器进化LRRFIP Transcriptional Repressor Cytoskeleton Rearrangement Cytosolic Nucleic Acid Sensor Evolution

LRRFIP蛋白是能与富含亮氨酸重复序列的FLI (flightless I)蛋白相互作用的分子,参与许多生物学过程,包括作为转录抑制因子抑制TNFα以及NFκB的活性,能与其他蛋白相互作用调控Wnt/β-catenin信号通路进而参与细胞骨架的重排以及作为胞质内外源核酸感受器参与抗病毒过程等。系统进化分析显示,高等哺乳动物中的LRRFIP1和LRRFIP2,以及鱼类中LRRFIP1a,LRRFIP1b和LRRFIP2都是由早期多细胞动物中单一的原始的LRRFIP进化而来。

Abstract: LRRFIPs was originated as proteins interacting with leucine-rich repeat flightless I gene (FLI); it is involved many functions, including acting as a transcriptional repressor to inhibit TNFα and NFκB activity, interacting with other proteins to regulate Wnt/β-catenin signaling pathway for cytoskel-eton rearrangement, and function as cytosolic nucleic acid sensor against exogenous virus. Phylo-genetic analysis revealed that LRRFIP1 and LRRFIP2 in mammals, LRRFIP1a, LRRFIP1b and LRRFIP2 in fishes are all evolved from single proto LRRFIP in early multicellular organisms.

文章引用: 赵晓婷 , 汲广东 (2016) LRRFIP家族的研究进展。 海洋科学前沿, 3, 58-63. doi: 10.12677/AMS.2016.32009


[1] Khachigian, L.M., Santiago, F.S., Rafty, L.A., et al. (1999) GC Factor 2 Represses Platelet-Derived Growth Factor A-Chain Gene Transcription and Is Itself Induced by Arterial Injury. Circulation Research, 84, 1258-1267.

[2] Liu, Y.T. and Yin, H.L. (1998) Identification of the Binding Partners for Flightless I, A Novel Protein Bridging the Leucine-Rich Repeat and the Gelsolin Superfamilies. The Journal of Biological Chemistry, 273, 7920-7927.

[3] Wilson, S.A., Brown, E.C., Kingsman, A.J., et al. (1998) TRIP: A Novel Double Stranded RNA Binding Protein Which Interacts with the Leucine Rich Repeat of Flightless I. Nucleic Acids Research, 26, 3460-3467.

[4] Dai, P., Jeong, S.Y., Yu, Y., et al. (2009) Modulation of TLR Signaling by Mul-tiple MyD88-Interacting Partners including Leucine-Rich Repeat Fli-I-Interacting Proteins. Journal of Immunology, 182, 3450-3460.

[5] Gubern, C., Camos, S., Hurtado, O., et al. (2014) Characterization of Gcf2/Lrrfip1 in Experimental Cerebral Ischemia and Its Role as a Modulator of Akt, mTOR and Beta-Catenin Signaling Pathways. Neuroscience, 268, 48-65.

[6] Nguyen, J.B. and Modis, Y. (2013) Crystal Structure of the Dimeric Coiled-Coil Domain of the Cytosolic Nucleic Acid Sensor LRRFIP1. Journal of Structural Biology, 181, 82-88.

[7] Kostianets, O., Antoniuk, S., Filonenko, V., et al. (2012) Immunohistochemical Analysis of Medullary Breast Carcinoma Autoantigens in Different Histological Types of Breast Carcinomas. Diagnostic Pathology, 7, 161.

[8] Ye, Y., Perez-Polo, J.R., Qian, J., et al. (2011) The Role of microRNA in Modulating Myocardial Ischemia-Reperfu- sion Injury. Physiological Genomics, 43, 534-542.

[9] Shi, L., Song, L., Fitzgerald, M., et al. (2014) Non-Coding RNAs and LRRFIP1 Regulate TNF Expression. Journal of Immunology, 192, 3057-3067.

[10] Mallolas, J., Hurtado, O., Castellanos, M., et al. (2006) A Polymorphism in the EAAT2 Promoter Is Associated with Higher Glutamate Concentrations and Higher Frequency of Progressing Stroke. The Journal of Experimental Medicine, 203, 711-717.

[11] Ohtsuka, H., Oikawa, M., Ariake, K., et al. (2011) GC-Binding Factor 2 Interacts with Dishevelled and Regulates Wnt Signaling Pathways in Human Carcinoma Cell Lines. International Journal of Cancer, 129, 1599-1610.

[12] Strudwick, X.L. and Cowin, A.J. (2012) Cytoskeletal Regulation of Dermal Regeneration. Cells, 1, 1313-1327.

[13] Douchi, D., Ohtsuka, H., Ariake, K., et al. (2015) Silencing of LRRFIP1 Reverses the Epithelial-Mesenchymal Transition via Inhibition of the Wnt/Beta-Catenin Signaling Pathway. Cancer Letters, 365, 132-140.

[14] Shen, D.W., Pouliot, L.M., Gillet, J.P., et al. (2012) The Transcription Factor GCF2 Is an Upstream Repressor of the Small GTPAse RhoA, Regulating Membrane Protein Trafficking, Sensitivity to Doxorubicin, and Resistance to Cisplatin. Molecular Pharmaceutics, 9, 1822-1833.

[15] Ariake, K., Ohtsuka, H., Motoi, F., et al. (2012) GCF2/LRRFIP1 Promotes Colorectal Cancer Metastasis and Liver Invasion through Integ-rin-Dependent RhoA Activation. Cancer Letters, 325, 99-107.

[16] Bagashev, A., Fitzgerald, M.C., Larosa, D.F., et al. (2010) Leucine-Rich Repeat (in Flightless I) Interacting Protein-1 Regulates a Rapid Type I Interferon Response. Journal of Interferon & Cytokine Research, 30, 843-852.

[17] Broz, P. and Monack, D.M. (2013) Newly Described Pattern Recognition Receptors Team up against Intracellular Pathogens. Nature Reviews Immunology, 13, 551-565.

[18] Suriano, A.R., Sanford, A.N., Kim, N., et al. (2005) GCF2/LRRFIP1 Represses Tumor Necrosis Factor Alpha Expression. Molecular and Cellular Biology, 25, 9073-9081.

[19] 李婷婷, 何小兵, 贾怀杰, 等. 小鼠LRRFIP1基因的克隆及LRRFIP1天然免疫模式识别功能的研究[J]. 中国兽医科学, 2015, 45(6): 649-653.

[20] Yang, P., An, H., Liu, X., et al. (2010) The Cytosolic Nucleic Acid Sensor LRRFIP1 Mediates the Production of Type I Interferon via a Beta-Catenin-Dependent Pathway. Nature Immunology, 11, 487-494.

[21] Liu, Y., Zou, Z., Zhu, B., Hu, Z., Zeng, P. and Wu, L. (2015) LRRFIP1 Inhibits Hepatitis C Virus Replication by Inducing Type I Interferon in Hepatocytes. Hepatitis Monthly, 15, e28473.

[22] Choe, N., Kwon, J.S., Kim, J.R., et al. (2013) The microRNA miR-132 Targets Lrrfip1 to Block Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia. Atherosclerosis, 229, 348-355.

[23] Rotival, M., Ko, J.H., Srivastava, P.K., et al. (2015) Integrating Phosphoproteome and Transcriptome Reveals New Determinants of Macrophage Multinucleation. Molecular & Cellular Proteomics, 14, 484-498.

[24] Goodall, A.H., Burns, P., Salles, I., et al. (2010) Transcription Profiling in Human Platelets Reveals LRRFIP1 as a Novel Protein Regulating Platelet Function. Blood, 116, 4646-4656.

[25] Plourde, M., Vohl, M.C., Bellis, C., et al. (2013) A Variant in the LRRFIP1 Gene Is Associated with Adiposity and Inflammation. Obesity, 21, 185-192.

[26] Jin, J., Yu, Q., Han, C., et al. (2013) LRRFIP2 Negatively Regulates NLRP3 Inflam-masome Activation in Macrophages by Promoting Flightless-I-Mediated Caspase-1 Inhibition. Nature Communications, 4, Article No. 2075.

[27] Pinheiro, M., Pinto, C., Peixoto, A., et al. (2011) A Novel Exonic Rearrangement Affecting MLH1 and the Contiguous LRRFIP2 Is a Founder Mutation in Portuguese Lynch Syndrome Families. Genetics in Medicine, 13, 895-902.

[28] Liu, J., Bang, A.G., Kintner, C., et al. (2005) Identification of the Wnt Signaling Activator Leucine-Rich Repeat in Flightless Interaction Protein 2 by a Genome-Wide Functional Analysis. Proceedings of the National Academy of Sciences of the United States of America, 102, 1927-1932.

[29] Gunawardena, H.P., Huang, Y., Kenjale, R., et al. (2011) Unambiguous Char-acterization of Site-Specific Phosphorylation of Leucine-Rich Repeat Fli-I-Interacting Protein 2 (LRRFIP2) in Toll-Like Receptor 4 (TLR4)-Mediated Signaling. The Journal of Biological Chemistry, 286, 10897-10910.

[30] Buchsbaum, S., Bercovich, B., Ziv, T. and Ciechanover, A. (2012) Modification of the Inflammatory Mediator LRRFIP2 by the Ubiquitin-Like Protein FAT10 Inhibits Its Activity during Cellular Response to LPS. Biochemical and Biophysical Research Communications, 428, 11-16.

[31] Zhang, S., Yan, H., Li, C.Z., et al. (2013) Identification and Function of Leucine-Rich Repeat Flightless-I-Interacting Protein 2 (LRRFIP2) in Litopenaeus vannamei. PLoS ONE, 8, e57456.