多元宏观时间序列的拟合及预测—基于VAR模型和状态空间模型
Fitting and Prediction of Multi Macroeconomic Time Series—Based on VAR Model and State-Space Model

作者: 尹静茹 :云南财经大学统计与数学学院,云南 昆明;

关键词: 预测状态空间模型VAR模型宏观经济Prediction State Space Model VAR Model Macroeconomic

摘要: 预测是一直以来关注的问题,尤其在宏观经济方面。单变量时间序列的预测已不能满足基本的需要,多元宏观经济时间序列对拟合合理的模型需求迫切,当下AR模型和VAR模型发展较为完善,在一定程度上用于宏观领域分析及政策分析。状态空间模型在验证可观测变量的同时,加入不可观测变量,在经济开放且发展迅速的前提下更能适应实际的需要。本文选取三个宏观经济中三个方面(工业,货币供给和CPI)的基本变量,拟合VAR模型和状态空间模型并进行预测,比较预测效果。结果表明,状态空间模型的预测精度要优于VAR模型。

Abstract: Predictions have been concerned about the issue, especially in the macroeconomic. Univariate time series prediction can not meet basic needs. Multiple macroeconomic time series has urgent demand for reasonable model. Currently AR model and VAR model develop better, and to some extent, are used for analysis and policy analysis in macro fields. While state space model validates observable variables, unobserved variables are added. In an open economy and the rapid development background, state-space model can adapt to the actual needs. This paper selects the three basic macroeconomic variables in three areas (industrial, money supply and CPI), fitting VAR model and state space model and predicting, comparing predictions. The results show that the prediction accuracy of the state space model is superior to the VAR model.

文章引用: 尹静茹 (2016) 多元宏观时间序列的拟合及预测—基于VAR模型和状态空间模型。 统计学与应用, 5, 136-147. doi: 10.12677/SA.2016.52013

参考文献

[1] 朱满洲. 动态因子模型的理论和应用研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2013.

[2] 林博. 汇率波动、货币供给与通货膨胀——基于状态空间模型的实证研究[J]. 经济问题探索. 2015(4).

[3] Stock, J.H. and Watson, M.W. (2010) Dynamic Factor Models. Oxford Handbook of Economic Forecasting.

[4] 高铁梅. 计量经济分析方法与建模——EViews应用及实例[M]. 清华大学出版社, 2006.

[5] 陈友春, 朱文婕. 状态空间模型及其在传染病发病率预测中的应用[J]. 南京医科大学学报(自然科学版). 2015, 35(2).

[6] 吴喜之, 刘苗. 应用时间序列分析——R软件陪同[M]. 机械工业出版社, 2014.

分享
Top