轮胎花纹块表面形状优化研究
Surface Shape Optimization of Tire Pattern
作者: 柏 林 :建大橡胶(中国)有限公司,江苏 昆山; 梁 晨 , 李东明 :江苏大学,汽车与交通工程学院,江苏 镇江;
关键词: 胎面花纹块; 压力偏度值; 优化; 磨损; 抓地性能; Tread Block; Contact Pressure Deviation; Optimization; Wear Performance; Grip Performance
摘要:Abstract: The contact pressure distribution of the tire tread block has an important impact on tire wear re-sistance and grip performance. In this paper, a new optimization procedure to design the surface of tire patterns is combined with 3D finite element method. The coordinates of the nodes of the surface of the tread blocks were chosen as the design variables, and the deviation of contact pres-sure distribution was selected as target variable. The results confirmed that the optimization technique could lead to a final optimum distribution of contact pressure and better wear and grip performance.
文章引用: 柏 林 , 梁 晨 , 李东明 (2016) 轮胎花纹块表面形状优化研究。 机械工程与技术, 5, 120-129. doi: 10.12677/MET.2016.52016
参考文献
[1] Gent, A.N. and Walter, J.D. (2005) The Pneumatic Tire. NHTSA, Washington DC.
[2] 杨昂, 巢晓民, 吴晓明. 重型载货汽车轮胎异常磨损研究[J]. 汽车工艺与材料, 2014(10): 27-33.
[3] 汪晨, 黄海波, 刘金朋, 等. 考虑轴头驱动和侧倾力矩的轮胎接地性态建模[J]. 中国机械工程, 2016(7): 975-981.
[4] Pranoto, S.E., Hidayat, R., Tauviqirrahman, M., et al. (2016) Numerical Analysis of Tire/Contact Pressure Using Finite Element Method. American Institute of Physics Conference Series, 1124-1132.
[5]
Cao, P., Zhou, C., Jin, F., et al. (2016) Tire-Pavement Contact Stress with 3D Finite-Element Model: Part 1: Semi-Steel Radial Tires on Light Vehicles. Journal of Testing & Evaluation, 44, 788-800.
http://dx.doi.org/10.1520/jte20150234
[6] 任旭春, 姚振汉.轮胎胎冠形状优化的自适应序列响应面法[J]. 清华大学学报(自然科学版), 2006, 46(5): 736-739.
[7]
Lee, D.W. Kim, J.K., Kim, S.R. and Lee. K.H. (2011) Shape Design of a Tire Contour Based on Approximation Model. Mechanical Science and Technology, 25, 149-155.
http://dx.doi.org/10.1007/s12206-010-1108-7
[8] 张建. 基于人工智能技术的轮胎磨损性能优化[J]. 橡胶工业, 2010, 57(11): 655-658.
[9] 燕山, 王伟. 复杂胎面花纹轮胎有限元分析及试验研究[J]. 橡胶工业, 2016, 63(2): 102-106.
[10]
Oda, M. and Hara, T.A. (1995) Characteristic on Abrasion Pattern on a Sliding Surface of Rubber under Stickslip Motion. JSME (A), 61, 1663.
http://dx.doi.org/10.1299/kikaia.61.1663
[11]
Tang, T., Johnson, D., Smith, R.E., et al. (2014) Numerical Evaluation of the Temperature Field of Steady-State Rolling Tires. Applied Mathematical Modelling, 38, 1622-1637.
http://dx.doi.org/10.1016/j.apm.2013.08.033
[12] 庄继德. 汽车轮胎学[M]. 北京: 北京理工大学出版社, 1996.
[13] Pillo, G.D. and Lucidi, S. (1996) On Exact Augmented Lagrangian Functions in Nonlinear Programming Problems. Plenum Press, New York.
[14]
Pillo, G.D. and Lucidi, S. (2001) An augmented Lagrangian Function with Improved Exactness Proper Ties. SIAM Journal on Optimization, 12, 376.
http://dx.doi.org/10.1137/S1052623497321894
[15] 陈海荣. 带复杂花纹的子午线轮胎有限元建模方法[J]. 橡胶工业, 2012, 59(5): 296-299.