基于逆向工程及3D打印技术的洗衣机创新设计
Machine Innovation Design Based on Reverse Engineering and 3D Printing Technology

作者: 李 丹 :大连工业大学艺术与信息工程学院,辽宁 大连;

关键词: 逆向工程3D打印技术Geomagic StudioUG建模创新设计Reverse Engineering 3D Printing Technology Geomagic Studio UG Modeling Innovative Design

摘要:
本文介绍了一种基于逆向工程与3D打印技术实现洗衣机创新设计的新方法。首先通过光学激光扫描仪采集洗衣机的初始点云信息,并利用Geomagic Studio软件和UG软件对其进行数据处理与模型重构,获得该产品改进后的三维模型;然后利用3D打印技术快速输出实体模型并进行验证,根据验证反馈对三维模型进一步改进,如此反复直至满足目标要求,实现产品的设计创新。整个创新设计的过程,缩短了设计周期,降低了设计成本,简化了设计制作流程,是一种洗衣机创新设计的新方法。实践证明,逆向工程与3D打印技术相结合的方法,在产品创新设计领域具有明显的优势以及应用前景。

Abstract: A new method of realizing washing machine innovation design is proposed based on reverse en-gineering and 3D printing technology. First the 3D model of the improved product is obtained by collecting early point cloud information of the washing machine through an optical laser scanner and using the Geomagic Studio software and UG software for data processing and model recon-struction. Then the innovation meetting the requirements of the target in the design of the product is realized by further improvements according to the feedback of 3D model verification after using 3D printing quickly output entity model. The whole process of innovation design is a new method for washing machine innovation design, which has shorten the design cycle, reduced the design cost, simplified the procedure of design and production through reverse engineering and 3D printing technology compared with the traditional method. Practice showed that the reverse engineering combined with 3D printing method has obvious advantages and the application prospect in the field of product innovation design.

文章引用: 李 丹 (2016) 基于逆向工程及3D打印技术的洗衣机创新设计。 机械工程与技术, 5, 102-107. doi: 10.12677/MET.2016.52013

参考文献

[1] 成思源, 等. 基于Geomagic Studio的快速曲面重建[J]. 现代制造工程, 2011(1): 8-12.

[2] Varady, T., Facello, M.A. and Ter’ek, Z. (2007) Automatic Extraction of Surface Structures in Digital Shape Reconstruction. Computer-Aided Design, 39, 379-388.

[3] 谢英星, 张晓红. 基于Geomagic Studio和快速成型技术的产品设计[J]. 工具技术, 2015(6): 61-65.

[4] 李涤尘, 田小永, 王永信, 等. 增材制造技术的发展[J]. 电加工与模具, 2012(1): 20-22.

[5] 杜宇雷, 孙菲菲, 原光, 翟世先, 翟海平. 3D打印材料的发展现状[J]. 徐州工程学院学报, 2014, 29(1): 20-24.

[6] 王运赣. 快速成型技术[M]. 武汉: 华中理工大学出版社, 1999.

[7] 袁晓东. 基于逆向工程与3D打印技术的产品创新设计研究[J]. 机械设计, 2015, 32(10): 105-108.

[8] 胡影峰. Geomagic Stu-dio软件在逆向工程后处理中的应用[J]. 制造业自动化, 2009, 31(9): 135-137.

[9] 宋传斌, 张树生, 张博林. 基于UG平台的保护头盔外壳参数化逆向设计[J]. 现代制造工程, 2008(4): 62-65.

[10] 刘军华, 成思源, 蒋伍, 等. 逆向工程中的参数化建模技术及应用[J]. 机械设计与制造, 2011(10): 82-84.

[11] Scans, E.M. (1993) Three-Dimensional Printing Technique. US Patent: NO.5204055.

[12] 刘厚才. 三维打印快速成型零件制作方向的优化研究[J]. 工程图学学报, 2009(3): 41-44.

[13] 孙进, 朱兴龙, 闫大战, 陈晓波. 基于逆向工程的工艺品设计及快速成型[J]. 机械设计与制造工程, 2015, 44(8): 30-33.

分享
Top