GA算法优化的FPID控制VIENNA整流器的研究
Research on VIENNA Rectifier Based on FPID Controller Optimized by GA Algorithm

作者: 尹延松 , 杨 威 , 杨世彦 :哈尔滨工业大学,黑龙江 哈尔滨;

关键词: VIENNA整流器FPID遗传算法中点电位平衡VIENNA Rectifier FPID GA Algorithm Neutral-Point Potential Balance

摘要:
传统PID控制动态响应速度慢、抗干扰性能差,本文针对VIENNA整流器采用分数阶PID (FPID)控制策略进行研究。在三相输入对称条件下,对VIENNA整流器进行三相解耦,进而建立数学模型;根据分数阶微积分理论,基于IEAT指标并采用遗传(GA)算法对FPID控制器参数进行优化设计,提高VIENNA整流器动态响应特性与鲁棒性;建立simulink模型,通过仿真对比验证了FPID控制快速的动态响应特性,并通过样机实验验证了FPID控制的可行性。

Abstract: There are many shortcomings in traditional PID controller, such as the slow dynamic response and the poor robustness. Based on VIENNA rectifier, this paper analyses the performance of fractional-order PID controller. Under the balanced three-phase input situation, we decoupled the VIENNA rectifier and established the mathematic model. According to the theory of fractional calculus, we optimized the parameters of FPID by genetic algorithm (GA) to improve the performance of dynamic response and the robustness, aiming at the IEAT index. We constructed the VIENNA model by Simulink, verified the good performance of FPID, designed a 2 kW VIENNA rectifier, and confirmed the effectiveness of FPID controller by experiment.

文章引用: 尹延松 , 杨 威 , 杨世彦 (2016) GA算法优化的FPID控制VIENNA整流器的研究。 电气工程, 4, 117-125. doi: 10.12677/JEE.2016.42015

参考文献

[1] 张东升. 高功率因数VEINNA整流器控制策略的研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2009.

[2] Fridli, T., Hartmann, M. and Kolar, J.W. (2014) The Essence of Three-Phase PFC Rectifier Systems-Part II. IEEE Transactions on Power Electronics, 29, 543-560.
http://dx.doi.org/10.1109/TPEL.2013.2258472

[3] Kolar, J.W. and Zach, F.C. (1997) A Novel Three-Phase Utility Interface Minimizing Line Current Harmonics of High- Power Telecommunications Rectifier Modules. IEEE Transactions on Industrial Electronics, 44, 456-466.
http://dx.doi.org/10.1109/41.605619

[4] Burgos, R., Lai, R.X. and Pei, Y.Q. (2008) Space Vector Modulator for Vienna-Type Rectifiers Based on Equivalence between Two- and Three-Level Converters: A Carrier-Based Implementation. IEEE Transactions on Industrial Electronics, 23, 1888-1896.

[5] Lai, R.X., Wang, F. and Burgos, R. (2009) Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Balance. IEEE Transactions on Industrial Electronics, 24, 2509-2522.
http://dx.doi.org/10.1109/tpel.2009.2032262

[6] Qiqo, C.M. and Smedley, K.M. (2003) Three-Phase Unity-Power-Factor Star-Connected Switch (VIENNA) Rectifier with Unified Constant-Frequency Integration Cntrol. IEEE Transactions on Power Electronics, 18, 952-957.
http://dx.doi.org/10.1109/TPEL.2003.813759

[7] 韦徵, 陈新, 樊轶, 龚春英. 单周期控制的三相三电平VIENNA整流器输出中点电位分析及控制方法研究[J]. 中国电机工程学报, 2013, 33(15): 29-36.

[8] Hassan, M.K., Azubir, N.A.M., Nizam, H.M.I., Toha, S.F. and Ibrahim, B.S.K.K. (2012) Optimal Design of Electric Power Assisted Steering System (EPAS) Using GA-PID Method. Procedia Engineering, 41, 614-621.
http://dx.doi.org/10.1016/j.proeng.2012.07.220

[9] 严刚, 姚文熙, 李宾, 杭丽君, 吕征宇. 混合导通模式三相三电平VIENNA整流器控制策略[J]. 电工技术学报, 2012, 27(12): 87-93.

分享
Top