Resistance Characteristics Based on TiO2Nanotube at Low Temperature

作者: 陈 燕 :绵阳师范学院数理学院,四川 绵阳;

关键词: TiO2纳米管光响应暗电阻TiO2 NTA Photoresponse Dark Resistance

选用电化学阳极阳化方法在金属Ti片上生长了TiO2纳米管,并用碳纳米管(CNT)薄膜作为上电级,制作成了CNT/TiO2/Ti三明治形状的纳米器件。测试了样品在各低温下的光电响应特性和电阻特性。研究表明,选用碳纳米管作上电极的TiO2纳米管阵列,在532 nm的激光照射下,其光电导和暗电导特性极大地受到温度的影响。在低温下的光电阻和暗电阻会随着温度的增加而减小,同时暗电流增大,光响应度增强。最后,该器件和作了前置电阻处理后的同类型器件作了简要对比分析。

Abstract: This paper presents the TiO2 nanotube array (NTA) anodized. Use the carbon nanotube (CNT) film as the upper electrode coated on the TiO2 NTA, a CNT/TiO2NTA/Ti sandwich nanodevice has been fabricated. Its photoresponse and resistance characteristics at low temperature have been researched. Result shows that at 532 nm illumination, the photoconductivity of TiO2 NTA and the dark-conductivity have been strongly impacted by the temperature. The dark resistance and the photo resistance will decrease while the temperature rising, and the dark current and photoresponse accordingly increases as well. Finally, compared with other nanodevice used pre-electroforming, this result has been briefly studied.

文章引用: 陈 燕 (2016) TiO2纳米管光电材料在低温下的阻变特性研究。 光电子, 6, 54-58. doi: 10.12677/OE.2016.62009


[1] Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C. (2001) Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. Journal of Materials Research, 16, 3331-3334. http://dx.doi.org/10.1557/JMR.2001.0457

[2] Jun, Y., Jong, W., Parkwb, H. and Kang, M.G. (2012) The Preparation of Highly Ordered TiO2 Nanotube Arrays by an Anodization Method and Their Applications. Chemical Communications, 48, 6456-6471. http://dx.doi.org/10.1039/c2cc30733b

[3] Tian, Y., Hu, C., He, X., Cao, C., Huang, G. and Zhang, K. (2010) Titania Nanotube Arrays for Light Sensor and UV Photometer. Sensors and Actuators B: Chemical, 144, 203. http://dx.doi.org/10.1016/j.snb.2009.10.065

[4] Kang, Q., Lu, Q.Z., Liu, S.H., Yang, L.X., Wen, L.F., Luo, S.L. and Cai, Q.Y. (2010) A Ternary Hybrid CdS/Pt-TiO2 Nanotube Structure for Photoelectrocatalytic Bactericidal Effects on Escherichia coli. Biomaterials, 31, 3317-3326. http://dx.doi.org/10.1016/j.biomaterials.2010.01.047

[5] Kang, Q., Yang, L., Chen, Y., Luo, S., Wen, L., Cai, Q. and Yao, S. (2010) Photoelectrochemical Detection of Pentachlorophenol with a Multiple Hybrid CdSexTe1−x/TiO2 Nanotube Structure-Based Label-Free Immunosensor. Analytical Chemistry, 82, 9749-9754. http://dx.doi.org/10.1021/ac101798t

[6] Wang, M.-Z., Liang, F.-X., Nie, B. and Zeng, L.-H. (2013) TiO2 Nanotube Array/Monolayer Graphene Film Schottky Junction Ultraviolet Light Photodetectors. Particle & Particle Systems Characterization, 30, 630-636. http://dx.doi.org/10.1002/ppsc.201300040

[7] Yang, M.J., Zhu, J.-L., Liu, W. and Sun, J.-L. (2011) Novel Photodetectors Based on Double-Walled Carbon Nanotube Film/TiO2 Nanotube Array Heterodimensional Contacts. Nano Research, 11, 0146. http://dx.doi.org/10.1007/s12274-011-0146-5

[8] Zhang, G.W., Sun, J.-L., Wei, J.Q., Sun, H.H. and Zhu, J.-L. (2013) Significantly Enhanced Photoresponse in Carbon Nanotube Film/TiO2 Nanotube Array Heterojunctions by Pre-Electroforming. Nanotechnology, 24, Article ID: 465203.

[9] Hu, W., Qin, N., Wu, G.H., Lin, Y.T., Li, S.W. and Bao, D.H. (2012) Opportunity of Spinel Ferrite Materials in Nonvolatile Memory Device Applications Based on Their Resistive Switching Performances. Journal of the American Chemical Society, 134, 14658-14661. http://dx.doi.org/10.1021/ja305681n

[10] Hong, Q.S., Cao, Y., Xu, J., Lu, H.M., He, J.H. and Sun, J.-L. (2014) Self-Powered Ultrafast Broadband Photodetector Based on p-n Heterojunctions of CuO/Si Nanowire Array. ACS Applied Materials & Interfaces, 6, 20887-20894. http://dx.doi.org/10.1021/am5054338

[11] Zhu, J.-L., Zhang, G.W., Wei, J.Q. and Sun, J.-L. (2012) Negative and Positive Photoconductivity Modulated by Light Wavelengths in Carbon Nanotube Film. Applied Physics Letters, 101, Article ID: 123117. http://dx.doi.org/10.1063/1.4754624