冷变形对2219铝合金环轧件组织和力学性能的影响
Effect of Cold-Deformation on Mechanical Property and Microstructure of 2219 Aluminum Alloy Ring Rolled Pieces

作者: 陈运强 , 陈康华 , 陈送义 , 邢 军 :中南大学轻合金研究院,湖南 长沙;

关键词: 2219大型环轧件冷变形力学性能腐蚀性能时效析出相2219 Large Ring Rolled Pieces Cold-Deformation Mechanical Properties Corrosion ResistanceAge Precipitation Phase

摘要:
本文采用维氏硬度计、拉伸力学性能测试,透射电镜(TEM)、扫描电镜(SEM)等实验分析手段,研究了2219环轧件在不同冷变形条件下的组织和力学性能。结果表明:随着冷变形程度的增加,合金达到峰值时效的时间明显缩短,其峰值硬度逐渐增加;材料的抗拉强度和屈服极限随时冷变形量的增加先增加后略微下降,冷变形量为3%时性能最佳,抗拉强度为426.54 MPa (轴向)、436.62 MPa (切向)、445.67 MPa (径向)和屈服强度为323.88 MPa (轴向)、334.35 MPa (切向)、336.72 MPa (径向);随着冷变形量的增加,合金塑性整体呈下降趋势,以切向降低最为显著。随着冷变形程度的增加,合金析出相逐渐增长加厚,第二相粒子位错运动机制由切过机制转换为绕过机制。综合考虑,当变形量为3%时性能最佳。

Abstract: The effect of cold-deformation about 2219 aluminum alloy ring rolled pieces was investigated by Vicker hardness TEM, SEM, and mechanical testing. Study shows that hardness and time of peak-aging gradually increase following the adding of cold-deformation. Yield strength or tensile strength increases firstly and then maintains as the cold-deformation adding. At deformation 3%, it has best properties with the tensile strength: 426.52 MPa (axial direction), 436.62 MPa (tangent direction) and 445.67 MPa (radial direction), and yield strength: 323.88 MPa (axial direction), 334.35 MPa (tangent direction), 336.72 MPa (radial direction). The elongation will decrease along with the cold-deformation adding, which is particularly significant along tangent direction. As cold-defor- mation increases, precipitation of alloy becomes longer and wider, the mechanism of dislocation changes to Orowan from the cross precipitation. In general, forge pieces have best prop-erties at 3% deformation.

文章引用: 陈运强 , 陈康华 , 陈送义 , 邢 军 (2016) 冷变形对2219铝合金环轧件组织和力学性能的影响。 材料科学, 6, 197-206. doi: 10.12677/MS.2016.63025

参考文献

[1] Narasayya, C.V.A., Rambabu, P., Mohan, M.K., et al. (2014) Tensile Deformation and Fracture Behaviour of an Aer-ospace Aluminium Alloy AA2219 in Different Ageing Conditions. Procedia Materials Science, 6, 322-330.

[2] 谷艳霞, 刘志义, 于迪尔,等. Al-5.7Cu-0.4Mg-1.2Ag合金的时效析出行为[J]. 粉末冶金材料科学与工程, 2013(2): 176-181.

[3] Song, M., He, Y., Xiao, D., et al. (2009) Effect of Thermomechanical Treatment on the Mechanical Properties of an Al-Cu-Mg Alloy. Materials & Design, 30, 857-861.
http://dx.doi.org/10.1016/j.matdes.2008.05.053

[4] 张新明, 寓真, 刘玲, 等. 冷轧预变形对2519A铝合金时效析出的影响[J]. 中南大学学报: 自然科学版, 2011, 42(1): 46-50.

[5] An, L.-H., Cai, Y., Liu, W., et al. (2012) Effect of Pre-Deformation Onmicrostructure and Mechanical Properties of 2219 Aluminum Alloy Sheet by Thermo-mechanical Treatment. Transactions of Nonferrous Metals Society of China, 2012, 2.

[6] Ghosh, S.K. (2011) Influence of Cold Deformation on the Aging Behaviour of Al-Cu-Si-Mg Alloy. Journal of Materials Science & Technology, 27, 193-198.
http://dx.doi.org/10.1016/S1005-0302(11)60048-0

[7] Yang, Y., Zhan, L., Ma, Q., et al. (2015) Effect of Pre-Deformation on Creep Age Forming of AA2219 Plate: Springback, Microstructures and Mechanical Properties. Journal of Materials Processing Technology, 229, 697-702.
http://dx.doi.org/10.1016/j.jmatprotec.2015.10.030

[8] 王建华, 易丹青, 苏旭平, 等. 2618铝合金形变热处理组织与热力学分析[J]. 特种铸造及有色合金, 2007, 27(4): 247-249.

[9] Son, S.K., Takeda, M., Mitome, M., et al. (2005) Precipitation Behavior of an Al-Cu Alloy during Isothermal Aging at Low Temperatures. Materials Letters, 59, 629-632.
http://dx.doi.org/10.1016/j.matlet.2004.10.058

[10] 李慧中, 张新明, 陈明安, 等. 预变形对 2519 铝合金组织与力学性能的影响[J]. 中国有色金属学报, 2004(12): 003.

[11] Shang, F.U., Yi, D., Liu, H., et al. (2014) Effects of External Stress Aging on Morphology and Precipitation Behavior of θ″ Phase in Al-Cu Alloy. Transactions of Nonferrous Metals Society of China, 24, 2282-2288.
http://dx.doi.org/10.1016/S1003-6326(14)63345-8

[12] Zheng, R., Sun, Y., Ameyama, K., et al. (2014) Optimizing the Strength and Ductility of Spark Plasma Sintered Al 2024 Alloy by Conventional Thermo-Mechanical Treatment. Materials Science and Engineering: A, 590, 147-152.
http://dx.doi.org/10.1016/j.msea.2013.10.017

分享
Top