Riordan阵与广义λ-Array Type多项式恒等式
Generalized λ-Array Type Polynomials with Exponential Riordan Array

作者: 青兰 * , 乌云高娃 :内蒙古大学数学科学学院,内蒙古 呼和浩特;

关键词: 指数型Riordan阵广义λ-Array Type多项式经典Array Type多项式第二类Stirling数Exponential Riordan Array Generalized λ-Array Type Polynomials Classical Array Type Polynomials Stirling Numbers of the Second Kind

在本文中定义了一类广义λ-array多项式,并利用运用指数型Riordan阵方法与组合分析法,研究了广义λ-array type多项式,得到了广义λ-array type多项式与广义Hermite-Based Apostol Bernoulli多项式,广义Hermite-Based Apostol Euler多项式的关系式,给出了array type多项式,第二类Stirling数以及高阶Bernoulli多项式,高阶Euler多项式的一些恒等式。

Abstract: In this paper, by using exponential Riordan array methods, we proved some identities among the generalized λ-array type polynomials, the generalized Hermite-Based Apostol Bernoulli polyno-mials and the generalized Hermite-Based Apostol Euler polynomials. We also obtain some combi-natorial identities involving the classical array type polynomials, the Stirling number of the second kind, the generalized Bernoulli polynomials and the generalized Euler polynomials.

文章引用: 青兰 , 乌云高娃 (2016) Riordan阵与广义λ-Array Type多项式恒等式。 理论数学, 6, 288-298. doi: 10.12677/PM.2016.63043


[1] Comtet, L. (1974) Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht.

[2] Luo, Q.M. and Srivastava, H.M. (2011) Some Generalizations of the Appostol—Genocchhi Polynomials and the Stirling Numbers of the Second Kind. Applied Mathematics and Computation, 217, 5702-5728.

[3] Simsek, Y. (2013) Generating Functions for Generalized Stirling Type Numbers, Array Type Polynomials, Eulerian Type Polynomials and Their Applications. Fix Point Theory and Applications, 28 p.

[4] Chang, C.H. and Ha, C.W. (2006) A Multiplication Theorem for the Lerch Zeta Function and Explicit Representations of the Bernoulli and Euler Polynomials. Journal of Mathematical Analysis and Applications, 315, 758-767.

[5] Simsek, Y. (2011) Interpolation Function of Generalized q-Bernstein Type Polynomials and Their Application. Lecture Notes in Computer Science, 6920, 647-662.

[6] 马兴辰, 乌云高娃. 特征多项式的性质及推广[D]: [硕士学位论文]. 呼和浩特: 内蒙古大学, 2014.

[7] 王天明. 近代组合学[M]. 大连: 大连理工大学出版社, 2008.

[8] Wang, W.P. and Wang, T.M. (2008) Generalized Riordan Arrays. Discrete Mathematics, 308, 6466-6500.

[9] Roman, S. (1984) Umbral Calculus. Academic Press, Inc., New York.