基于贝叶斯网络的船舶引航风险预警
Risk Warning for Ship Pilotage Based on Bayesian Networks

作者: 张树波 :广州航海学院计算机系,广东 广州; 唐强荣 :广州航海学院海运系,广东 广州;

关键词: 船舶引航引航风险风险预警贝叶斯网络Ship Pilotage Pilotage Risk Risk Warning Bayesian Network

摘要: 船舶引航是水上交通运输的重要环节,它对于船舶安全进表出港、港口正常作业、环境保护和提升国家港口形象等方面具有重要意义。船舶引航是一个复杂的过程,它与人、船舶和环境等各种因素密切相关,研究各种因素对引航安全的影响以及这些因素之间的相互关系,动态识别船舶引航风险,有利于及时采取措施,确保船舶安全进出港。本文提出一种用于船舶引航风险预警的贝叶斯网络模型,通过文献调研和对专家进行深度访谈,利用专家知识和文献资料的信息确定网络的拓扑结构和相关参数。用SamIam软件建模并对一些船舶引航案例进行分析,结果表明本文的贝叶斯网络能够对船舶引航过程的相关风险做出正确的预警,具有实际应用的价值。

Abstract: Ship pilotage is an important process of marine traffic transportation, as it is critical to in-and-out port ships, port operations, environmental protection and the image of national port. The pilotage is a complicated process, which is involved with human, vessel and environment. Investigating the elements that influence the safety of ship pilotage, and the relationship among these elements will help to take appropriate measures for safety pilotage. In this study, we developed a Bayesian net-work for pilotage risk warning based on literature investigation and deep interview with experts. The structure and parameters of the network were determined from expert knowledge. The vali-dation experiments were conducted on SamIam and a dozen of real pilotage cases were used to test our network. The experimental results show that the proposed network can correctly predict the risk in case of dangers and is promising for practical application.

文章引用: 张树波 , 唐强荣 (2016) 基于贝叶斯网络的船舶引航风险预警。 建模与仿真, 5, 40-49. doi: 10.12677/MOS.2016.52006

参考文献

[1] 陈正华, 方泉根. 规范化安全评估(FSA)在上海港船舶引航安全工作中的应用[J]. 中国航海, 2005(1): 1-6.

[2] 方泉根, 胡甚平. FSA在船舶引航风险评估中的应用 [J]. 哈尔滨工程大学学报, 2006, 27(3): 329-334.

[3] 马飞. 综合安全评估在船舶引航安全评估中的应用[D]: [硕士学位论文]. 大连: 大连海事大学, 2008.

[4] 周丽丽, 胡甚平. 船舶引航风险成因灰色综合评价模型[J]. 上海海事大学学报, 2008, 29(2): 21-25.

[5] Friedman, N. (2004) Inferring Cellular Networks Using Probabilistic Graphical Models. Science, 303, 799-805.
http://dx.doi.org/10.1126/science.1094068

[6] Kashino, K., Nakadai, K., Kinoshita, T., et al. (1995) Application of Bayesian Probability Network to Music Scene Analysis. Computational Auditory Scene Analysis, 1, 1-15.

[7] Li, K.X., Yin, J., Bang, H.S., et al. (2014) Bayesian Network with Quantitative Input for Maritime Risk Analysis. Trans-portmetrica A: Transport Science, 10, 9-118.
http://dx.doi.org/10.1080/18128602.2012.675527

[8] Eleye-Datubo, A.G., Wall, A., Saajedi, A., et al. (2006) Enabling a Powerful Marine and Offshore Decision-Support Solution through Bayesian Network Technique. Risk Analysis, 26, 695-721.
http://dx.doi.org/10.1111/j.1539-6924.2006.00775.x

[9] Hänninen, M. and Kujala, P. (2012) Influences of Va-riables on Ship Collision Probability in a Bayesian Belief Network Model. Reliability Engineering & System Safety, 102, 27-40.
http://dx.doi.org/10.1016/j.ress.2012.02.008

[10] Trucco, P., Cagno, E., Ruggeri, F., et al. (2007) A Bayesian Belief Network Modelling of Organisational Factors in Risk Analysis: A Case Study in Maritime Transporta-tion. Reliability Engineering & System Safety, 93, 845-856.
http://dx.doi.org/10.1016/j.ress.2007.03.035

[11] Khakzad, N., Khan, F. and Amyotte, P. (2011) Safety Analysis in Process Facilities: Comparison of Fault Tree and Bayesian Network Approaches. Reliability Engineering & System Safety, 96, 925-932.
http://dx.doi.org/10.1016/j.ress.2011.03.012

[12] Khakzad, N., Khan, F. and Amyotte, P. (2013) Dynamic Safety Analysis of Process Systems by Mapping Bow-Tie into Bayesian Network. Process Safety and Environmental Protec-tion, 91, 46-53.
http://dx.doi.org/10.1016/j.psep.2012.01.005

[13] Antão, P., Guedes Suares, C., Grande, O., et al. (2009) Analysis of Maritime Accident Data with BBN Models. Safety, Reliability and Risk Analysis: Theory, Methods and Applications. Taylor & Francis Group, London.

[14] Antão, P. and Soares, C. (2010) Analysis of the Influence of Waves in the Occurrence of Accidents in the Portuguese Coast Using Bayesian Belief Networks. Journal of KONBiN, 13, 105-116.
http://dx.doi.org/10.2478/v10040-008-0140-5

[15] Eleye-Datubo, A.G., Wall, A. and Wang, J. (2008) Marine and Offshore Safety Assessment by Incorporative Risk Modeling in a Fuzzy-Bayesian Network of an Induced Mass Assignment Paradigm. Risk Analysis, 28, 95-112.
http://dx.doi.org/10.1111/j.1539-6924.2008.01004.x

[16] 刘克中, 干伟东, 黄明, 等. 基于贝叶斯网络的船舶溢油风险评价研究[J]. 中国航海, 2012, 35(1): 85-89.

[17] Zhang, J., Teixeira, Â.P., Guedes Soares, C., et al. (2016) Maritime Transportation Risk Assessment of Tianjin Port with Bayesian Belief Networks. Risk Analysis, 2016, 1-17.
http://dx.doi.org/10.1111/risa.12519

[18] 胡中凯, 尹群, 刘海燕. 基于贝叶斯网络方法对船舶搁浅概率的研究[J]. 舰船科学技术, 2010(2): 23-26.

[19] Shenping, H., Cunqiang, C. and Quangen, F. (2007) Risk Assessment of Ship Navigation Using Bayesian Learning. 2007 IEEE International Conference on Industrial Engineering and Engi-neering Management, Singapore, 2-4 De- cember 2007, 1878-1882.

[20] 胡甚平, 方泉根, 蔡存强. 基于贝叶斯网络推理的船舶航行风险评价[C]. 1995-2009航海技术论文选集, 2010(7): 55-56.

[21] 汤旭红, 刘红太, 蔡存强. 贝叶斯网络在海上船舶碰撞研究中的应用[J]. 中国航海, 2009, 32(2): 58-61.

[22] Hänninen, M., Mazaheri, A., Kujala, P., et al. (2004) Expert Elicitation of a Navigation Service Implementation Effects on Ship Groundings and Collisions in the Gulf of Finland. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 228, 19-28.
http://dx.doi.org/10.1177/1748006X13494533

[23] Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo.

[24] Koller, D. and Friedman, N. (2009) Probabilistic Graphical Models: Principles and Techniques—Adaptive Computation and Machine Learning. The MIT Press, Cambridge.

[25] Murphy, K.P. (1998) A Brief Introduction to Graphical Models and Bayesian Networks. Borgelt Net.

[26] Pearl, J. (1998) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco.

分享
Top