椪柑原生质体分离与培养过程中活性氧动态变化及来源分析
The Dynamic Changes and Origin Analysis of Reactive Oxygen Species during Isolation and Culture of Citrus reticulata Blanco Protoplasts

作者: 徐小勇 , 张一卉 , 凌裕平 :扬州大学园艺与植物保护学院,江苏 扬州;

关键词: 原生质体活性氧DPINaN3Protoplast Reactive Oxygen Species DPI NaN3

摘要: 分析原生质体分离与培养过程中活性氧(ROS)的动态变化与来源,对揭示原生质体再生能力差异的机制具有重要意义。本研究采用荧光标记法分析了ROS在椪柑原生质体分离与培养中的动态变化,同时通过ROS抑制剂处理探究了其ROS的来源。结果表明,ROS分布在原生质体的细胞质和细胞膜上;分离阶段愈伤组织原生质体的ROS水平显著低于叶肉原生质体,但在培养阶段显著高于叶肉原生质体;DPI与NaN3处理均显著降低了原生质体分离与培养过程中的ROS水平。因此,ROS在椪柑原生质体再生中具有重要调控作用。

Abstract: In order to uncover the mechanisms underlying different regeneration capacity of protoplasts, we analyzed the dynamic changes and origin of reactive oxygen species (ROS) during isolation and culture of Citrus reticulata Blanco protoplasts. The dynamic changes of ROS were analyzed by flu-orescent markers, and ROS origin was investigated by ROS indicators. The results showed that ROS signals were visible in the cytoplasm and cell membrane of protoplasts; compared with mesophyll protoplasts, callus protoplasts contained significantly lower level of ROS during isolation, but significantly higher level of ROS during culture; a significant decrease in the level of ROS during isolation and culture of callus protoplasts was observed after DPI or NaN3 treatment. Our findings indicate ROS plays a crucial mediating role in protoplast regeneration of Citrus reticulata.

文章引用: 徐小勇 , 张一卉 , 凌裕平 (2016) 椪柑原生质体分离与培养过程中活性氧动态变化及来源分析。 植物学研究, 5, 67-73. doi: 10.12677/BR.2016.53010

参考文献

[1] Eeckhaut, T., Lakshmanan, P.S., Deryckere, D., Bockstaele, E. and Huylenbroeck, J. (2013) Progress in Plant Protoplast Research. Planta, 238, 991-1003. http://dx.doi.org/10.1007/s00425-013-1936-7

[2] Yu, C.C., Wang, L.L., Chen, C., He, C.L., Hu, J., Zhu, Y.G. and Huang, W.C. (2014) Protoplast: A More Efficient System to Study Nucleo-Cytoplasmic Interactions. Biochemical and Biophysical Research Communications, 450, 1575-1580. http://dx.doi.org/10.1016/j.bbrc.2014.07.043

[3] Duarte, P., Ribeiro, D., Carqueijeiro, I., Bettencourt, S. and Sotto-mayor, M. (2016) Protoplast Transformation as a Plant-Transferable Transient Expression System. Methods in Molecular Biology, 1405, 137-148.
http://dx.doi.org/10.1007/978-1-4939-3393-8_13

[4] Tusa, N., Ferrauto, G. and Calderaro, E. (1992) Investiga-tions on Protoplast Regeneration from Leaves of Monoembryonic and Polyembryonic Citrus Species. Procedings of International Citrus Congress, Acireale, 8-13 March 1992, 180-182.

[5] 徐小勇, 刘继红. 紫外线灭活的原生质体作为饲养层培养柑橘原生质体的研究[J]. 江苏农业科学, 2009(6): 74-75.

[6] Pasternak, T.P., Ötvös, K., Domoki, M. and Fehér, A. (2007) Linked Activation of Cell Division and Oxidative Stress Defense in Alfalfa Leaf Protop-last-Derived Cells Is Dependent on Exogenous Auxin. Plant Growth Regulation, 51, 109-117.
http://dx.doi.org/10.1007/s10725-006-9152-0

[7] Papadakis, A.K. and Roubelakis-Angelakis, K.A. (2002) Oxidative Stress Could Be Responsible for the Recalcitrance of Plant Protoplasts. Plant Physiology and Biochemistry, 40, 549-559.
http://dx.doi.org/10.1007/s10725-006-9152-0

[8] de Marco, A. and Roubelakis-Angelakis, K.A. (1996) Hydrogen Peroxide Plays a Bivalent Role in the Regeneration of Protoplasts. Journal of Plant Physiology, 149, 109-114.
http://dx.doi.org/10.1016/S0176-1617(96)80181-7

[9] Xu, X.Y., Xie, G.S., He, L., Zhang, J.J., Xu, X.L., Qian, R., Liang, G.H. and Liu, J.H. (2013) Differences in Oxidative Stress, Antioxidant Systems, and Microscopic Analysis between Regenerating Callus-Derived Protoplasts and Recalcitrant Leaf Mesophyll-Derived Protoplasts of Citrus reticulata Blanco. Plant Cell, Tissue and Organ Culture, 114, 161- 169.
http://dx.doi.org/10.1007/s11240-013-0312-4

[10] Papadakis, A.K., Siminis, C.I. and Roubelakis-Angelakis, K.A. (2001) Reduced Activity of Antioxidant Machinery Is Correlated with Suppression of Totipotency in Plant Protoplasts. Plant Physiology, 126, 434-444.
http://dx.doi.org/10.1104/pp.126.1.434

[11] Yasuda, K., Watanabe, Y. and Watanabe, M. (2007) Generation of Intracellular Reactive Oxygen Species during the Isolation of Brassica napus Leaf Protoplasts. Plant Biotechnology, 24, 361-366.
http://dx.doi.org/10.5511/plantbiotechnology.24.361

[12] Tewari, R.K., Watanabe, D. and Watanabe, M. (2012) Chloroplastic NADPH Oxidase-Like Activity-Mediated Perpetual Hydrogen Peroxide Generation in the Chloroplast Induces Apoptotic-Like Death of Brassica napus Leaf Protoplasts. Planta, 235, 99-110.
http://dx.doi.org/10.1007/s00425-011-1495-8

[13] 王丽莉, 贾敬芬. 小麦原生质体分离过程中生理状态的变化[J]. 植物生理学报, 1994(20): 393-398.

[14] Cutler, A.J., Saleem, M. and Wang, H. (1991) Cereal Protoplast Re-calcitrance. In Vitro Cellular & Developmental Biology-Plant, 27, 104-111.
http://dx.doi.org/10.1007/BF02632192

[15] De Marco, A. and Roubelakis-Angelakis, K.A. (1996) The Complexity of Enzymic Control of Hydrogen Peroxide Concentration May Affect the Regeneration Potential of Plant Protoplasts. Plant Physiology, 110, 137-145.

[16] Papadakis, A.K. and Roubelakis-Angelakis, K.A. (1999) The Generation of Active Oxygen Species Differs in Tobacco and Grapevine Mesophyll Protoplasts. Plant Physiology, 121, 197-205.
http://dx.doi.org/10.1104/pp.121.1.197

[17] Petřivalský, M., Vaníčková, P., Ryzí, M., Navrátilová, B., Piterková, J., Sedlářová, M. and Luhová, L. (2012) The Effects of Reactive Nitrogen and Oxygen Species on the Regeneration and Growth of Cucumber Cells from Isolated Protoplasts. Plant Cell, Tissue and Organ Culture, 108, 237-249.
http://dx.doi.org/10.1007/s11240-011-0035-3

[18] Apel, K. and Hirt, H. (2004) Reactive Oxygen Species: Meta-bolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55, 373-399.
http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701

分享
Top