一类广义二阶锥线性互补问题的低阶罚函数算法
A Lower Order Penalty Method for a Kind of Generalized Second-Order Cone Linear Complementarity Problems

作者: 赵雯宇 * , 马小军 , 马 军 :北方民族大学,数学与信息科学学院,宁夏 银川;

关键词: 二阶锥互补问题低阶罚函数算法指数收敛速度Second-Order Cone Complementarity Problem Low Order Penalty Method Exponential Convergence Rate

摘要:
给出一类广义二阶锥线性互补问题的低阶罚函数算法。通过此算法,广义二阶锥线性互补问题被转化为低阶罚函数方程组。并且证明了低阶罚函数方程组的解序列在特定条件下以指数速度收敛于广义二阶锥线性互补问题的解。

Abstract: For a kind of generalized second-order cone linear complementary problem, using the ideas of lower order penalty function algorithm, it is converted to lower order penalty equations. We prove that the solution sequence of the lower order penalty equations converges to the solution of the generalized second-order cone complementarity problems at an exponential rate under particular conditions.

文章引用: 赵雯宇 , 马小军 , 马 军 (2016) 一类广义二阶锥线性互补问题的低阶罚函数算法。 理论数学, 6, 278-287. doi: 10.12677/PM.2016.63042

参考文献

[1] Alizadeh, F. and Goldfarb, D. (2003) Second-Order Cone Programming. Mathematical Programming, 95, 3-51.
http://dx.doi.org/10.1007/s10107-002-0339-5

[2] Lobo, M.S., Vandenberghe, L., Boyd, S., et al. (1998) Appli-cations of Second-Order Cone Programming. Linear Algebra and Its Applications, 284, 193-228.
http://dx.doi.org/10.1016/S0024-3795(98)10032-0

[3] Facchinei, F. and Pang, J.S. (2003) Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Science & Business Media.

[4] Nemirovski, A. and Scheinberg, K. (1996) Extension of Karmarkar’s Algorithm onto Convex Quadratically Constrained Quadratic Problems. Mathematical Programming, 72, 273-289.
http://dx.doi.org/10.1007/BF02592093

[5] Chen, X.D., Sun, D.F. and Sun, J. (2003) Complementarity Functions and Numerical Experiments for Second-Order Cone Complementarity Problems. Computational Optimization and Applications, 25, 39-56.
http://dx.doi.org/10.1023/A:1022996819381

[6] Kanzow, C., Ferenczi, I. and Fukushima M. (2009) On the Local Convergence of Semismooth Newton Methods for Linear and Nonlinear Second-Order Cone Programs without Strict Complementarity. SIAM Journal on Optimization, 20, 297-320.
http://dx.doi.org/10.1137/060657662

[7] Pan, S. and Chen, J.S. (2009) A Damped Gauss-Newton Method for the Second-Order Cone Complementarity Problem. Applied Mathematics and Optimization, 59, 293-318.
http://dx.doi.org/10.1007/s00245-008-9054-9

[8] Hayashi, S., Yamaguchi, T., Yamashita, N., et al. (2005) A Matrix-Splitting Method for Symmetric Affine Second- Order Cone Complementarity Problems. Journal of Computational and Applied Mathematics, 175, 335-353.
http://dx.doi.org/10.1016/j.cam.2004.05.018

[9] Chen, J.S. and Tseng, P. (2005) An Unconstrained Smooth Mi-nimization Reformulation of the Second-Order Cone Complementarity Problem. Mathematical Programming, 104, 293-327.
http://dx.doi.org/10.1007/s10107-005-0617-0

[10] Chen, J.S. (2006) Two Classes of Merit Functions for These Cond-Order Cone Complementarity Problem. Mathematical Methods of Operations Research, 64, 495-519.
http://dx.doi.org/10.1007/s00186-006-0098-9

[11] Hao, Z., Wan, Z. and Chi, X. (2015) A Power Penalty Method for Second-Order Cone Linear Complementarity Problems. Operations Research Letter, 43, 137-142.
http://dx.doi.org/10.1016/j.orl.2014.12.012

[12] Hao, Z., Wan, Z. and Chi, X. (2015) A Power Penalty Method for Second-Order Cone Nolinear Complementarity Problems. Journal of Computational and Applied Mathematics, 290, 136-149.
http://dx.doi.org/10.1016/j.cam.2015.05.007

[13] Zangwill, W.I. (1967) Non-Linear Programming via Penalty Functions. Management Science, 13, 344-358.
http://dx.doi.org/10.1287/mnsc.13.5.344

[14] Luo, Z.Q., Pang, J.S. and Ralph, D. (1996) Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511983658

[15] Wang, S. and Yang, X. (2008) A Power Penalty Method for Linear Complementarity Problems. Operations Research Letters, 36, 211-214.
http://dx.doi.org/10.1016/j.orl.2007.06.006

[16] Huang, C. and Wang, S. (2010) A Power Penalty Approach to a Nonlinear Complementarity Problem. Operations Research Letters, 38, 72-76.
http://dx.doi.org/10.1016/j.orl.2009.09.009

[17] Chen, J.S. (2006) The Convex and Monotone Functions Asso-ciated with Second-Order Cone. Optimization, 55, 363- 385.
http://dx.doi.org/10.1080/02331930600819514

[18] Faraut, J. and KorSnyi, A. (1994) Analysis on Symmetric Cones. Oxford University Press, Oxford.

[19] Fukushima, M., Luo, Z.Q. and Tseng, P. (2002) Smoothing Functions for Second-Order-Cone Complementarity Problems. SIAM Journal on Optimization, 12, 436-460.
http://dx.doi.org/10.1137/S1052623400380365

分享
Top