时滞忆阻神经网络的Lagrange稳定性
Lagrange Stability of Memristive Recurrent Neural Networks with Delays

作者: 殷芳霞 * , 李小林 :上海大学数学系,上海;

关键词: Lagrange稳定非光滑分析线性矩阵不等式Lagrange Stability Nonsmooth Analysis Linear Matrix Inequality (LMI)

摘要:
在本文中我们研究了时滞递归忆阻神经网络在Lagrange意义下的全局指数稳定性。通过运用非光滑分析方法、微分包含和不等式技巧[1] [2],我们得到了新的忆阻神经网络Lagrange稳定的充分条件,同时,我们给出了全局吸引集的估计方法。

Abstract: In this paper, we study the globally exponential stability in a Lagrange sense for memristive re-current neural networks with time-varying delays. By the results from the theories of nonsmooth analysis, differential inclusions and linear matrix inequalities [1] [2], a novel sufficient criterion in the form of linear matrix inequality is given to confirm the Lagrange stability of memristive re-current neural networks. Meanwhile, the estimation of the globally exponentially attractive set is also given.

文章引用: 殷芳霞 , 李小林 (2016) 时滞忆阻神经网络的Lagrange稳定性。 理论数学, 6, 272-277. doi: 10.12677/PM.2016.63041

参考文献

[1] Clarke, F.H., Ledyaev, Y.S., Stem, R.J. and Wolenski, R.R. (1998) Nonsmooth Analysis and Control Theory. Springer, New York.

[2] Aubin, J.P. and Cellina, A. (1984) Differential Inclusions. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-69512-4

[3] Zhang, G.D., Shen, Y. and Sun, J.W. (2012) Global Exponen-tial Stability of a Class of Memristor-Based Recurrent Neural Networks with Time-Varying Delays. Neurocomputing, 97, 149-154.
http://dx.doi.org/10.1016/j.neucom.2012.05.002

[4] Wu, A.L. and Zeng, Z.G. (2012) Exponential Stabilization of Memristive Neural Networks with Time Delays. IEEE Transactions on Neural Networks and Learning Systems, 23, 1919-1929.
http://dx.doi.org/10.1109/TNNLS.2012.2219554

[5] Zhang, G.D., Shen, Y. and Xu, C.J. (2015) Global Expo-nential Stability in a Lagrange Sense for Memristive Recurrent Neural Networks with Time-Varying Delays. Neuro-computing, 149, 1330-1336.
http://dx.doi.org/10.1016/j.neucom.2014.08.064

[6] Liao, X.X. (2000) Theory and Application of Stability for Dynamical System. National Defense Publishing House, Beijing.

[7] Filippov, A.F. (1988) Differential Equations with Discontinuous Right-Hand Sides. Kluwer, Dordrecht.
http://dx.doi.org/10.1007/978-94-015-7793-9

分享
Top