基于康复训练过程的人体步态分析
Human Gait Analysis Based on the Process of Rehabilitation Exercise

作者: 贾泽皓 * , 陈伟海 , 王建华 , 吴星明 , 彭 强 :北京航空航天大学自动化科学与电气工程学院,北京;

关键词: Kinect步态分析Kinect Gait Analysis

摘要:
随着我国逐步迈入老龄化社会,脑卒中、脑外伤、脊椎损伤等疾病在人群中的发病率逐渐升高,未来社会对于康复医疗的需求将十分迫切,而康复机器人的出现将在很大程度上缓解这一状况。为了在康复过程中对患者的运动步态进行分析,本文首先利用微软开发的Kinect二代体感传感器跟踪和采集患者在康复运动过程中的姿态信息,然后采用经过优化的基于Slope Constraints的坡度加权多维微分动态时间规整算法来实现步态的全局分类。同时为了实现步态的局部分析,本文提出一种基于特征语义信息分割的步态分析方法,以有效得到局部的信息。

Abstract: As China gradually entered the aging society, the incidence of stroke, traumatic brain injury, spinal cord injury and other diseases gradually increased. In the future, the medical needs for rehabilitation will be very urgent, and the appearance of the rehabilitation robot is a relief. In order to analyze the motion gait for patients in the course of rehabilitation, in this article, we use Kinect-II tracking and gather the gait motion of patients in the process of rehabilitation exercise, and then we achieve the global classification of gait by using multidimensional differential dynamic time warping algorithm based on slope constraints. At the same time, in order to realize the local analysis of the gait motion, we provide a gait analysis method which separates the gait information based on semantic feature.

文章引用: 贾泽皓 , 陈伟海 , 王建华 , 吴星明 , 彭 强 (2016) 基于康复训练过程的人体步态分析。 人工智能与机器人研究, 5, 41-52. doi: 10.12677/AIRR.2016.52005

参考文献

[1] Davis, R.B., Ounpuu, S., Tyburski, D., et al. (1991) A Gait Analysis Data Collection and Reduction Technique. Human Movement Science, 10, 575-587. http://dx.doi.org/10.1016/0167-9457(91)90046-Z

[2] Mirek, E., Rudzińska, M. and Szczudlik, A. (2006) The Assessment of Gait Disorders in Patients with Parkinson’s Disease Using the Three-Dimensional Motion Analysis System Vicon. Neurologia i Neurochirurgia Polska, 41, 128- 133.

[3] Liu, Y., Stoll, C., Gall, J., et al. (2011) Markerless Motion Capture of Interacting Characters Using Multi-View Image Segmentation. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1249-1256.

[4] Corazza, S., Muendermann, L., Chaudhari, A.M., et al. (2006) A Markerless Motion Capture System to Study Musculoskeletal Biomechanics: Visual Hull and Simulated Annealing Approach. Annals of Biomedical Engineering, 34, 1019-1029. http://dx.doi.org/10.1007/s10439-006-9122-8

[5] Shotton, J., Sharp, T., Kipman, A., et al. (2013) Real-Time Human Pose Recognition in Parts from Single Depth Images. Communications of the ACM, 56, 116-124. http://dx.doi.org/10.1145/2398356.2398381

[6] 许光旭, 卢青. 步态分析在偏瘫康复评定与治疗中的作用[J]. 中国运动医学杂志, 1997, 16(1): 29-35.

[7] Johansson, G. (1973) Visual Perception of Biological Motion and a Model for Its Analysis. Attention, Perception, & Psychophysics, 14, 201-211. http://dx.doi.org/10.3758/BF03212378

[8] Collins, R.T., Gross, R. and Shi, J. (2002) Silhouette-Based Human Identification from Body Shape and Gait. Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 366-371.

[9] Xue, Z., Ming, D., Song, W., et al. (2010) Infrared Gait Recognition Based on Wavelet Transform and Support Vector Machine. Pattern Recognition, 43, 2904-2910. http://dx.doi.org/10.1016/j.patcog.2010.03.011

[10] Sundaresan, A., Roy Chowdhury, A. and Chellappa, R. (2003) A Hidden Markov Model Based Framework for Recognition of Humans from Gait Sequences. International Conference on Image Processing, 2, II-93-6.

[11] Kale, A., Rajagopalan, A.N., Cuntoor, N., et al. (2002) Gait-Based Recognition of Humans Using Continuous HMMs. Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 336-341.

[12] Pogorelc, B., Bosnić, Z. and Gams, M. (2012) Automatic Recognition of Gait-Related Health Problems in the Elderly Using Machine Learning. Multimedia Tools and Applications, 58, 333-354. http://dx.doi.org/10.1007/s11042-011-0786-1

[13] Pogorelc, B. and Gams, M. (2012) Home-Based Health Monitoring of the Elderly through Gait Recognition. Journal of Ambient Intelligence and Smart Environments, 4, 415-428.

[14] Pogorelc, B. and Gams, M. (2013) Detecting Gait-Related Health Problems of the Elderly Using Multidimensional Dynamic Time Warping Approach with Semantic Attributes. Multimedia Tools and Applications, 66, 95-114. http://dx.doi.org/10.1007/s11042-013-1473-1

[15] Kalekar, P.S. (2004) Time Series Forecasting Using Holt-Winters Exponential Smoothing. Kanwal Rekhi School of Information Technology, 4329008.

[16] 梁俭, 史增祖. 湟中县房地产用地供应的增减变化与经济发展(GDP)的关系分析[J]. 青海国土经略, 2010(3): 33-34.

[17] Bellman, R. and Kalaba, R. (1959) On Adaptive Control Processes. IRE Transactions on Automatic Control, 4, 1-9. http://dx.doi.org/10.1109/TAC.1959.1104847

[18] 黄文龙. 语音识别关键技术研究及系统实现[D]: [硕士学位论文]. 重庆: 重庆大学, 2010.

[19] Berndt, D.J. and Clifford, J. (1994) Using Dynamic Time Warping to Find Patterns in Time Series. Workshop on Knowledge Discovery in Databases, 10, 359-370.

[20] Sakoe, H. and Chiba, S. (1978) Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26, 43-49. http://dx.doi.org/10.1109/TASSP.1978.1163055

[21] Kruskall, J.B. and Liberman, M. (1983) The Symmetric Time Warping Problem: From Continuous to Discrete. Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence.

[22] Keogh, E.J. and Pazzani, M.J. (2001) Derivative Dynamic Time Warping. SDM, 1, 5-7.

[23] Ten Holt, G.A., Reinders, M.J.T. and Hendriks, E.A. (2007) Mul-ti-Dimensional Dynamic Time Warping for Gesture Recognition. 13th Annual Conference of the Advanced School for Computing and Imaging.

分享
Top