﻿ 关于R-半拓扑空间上的一些结果

# 关于R-半拓扑空间上的一些结果Some Notes on R-Semi Topological Space

Abstract: Firstly, the concepts of Right-semi topology (i.e., R-semi-topological) are introduced by means of generalized topological spaces. Then, under the definition of Right-semi topology, nature that has been hereditary is explored, and nature that cannot be inherited is also illustrated combing with examples.

[1] Csaszar, A. (2002) Generalized Topology, Generalized Continuity. Acta Mathematica Hungarica, 96, 351-357.
http://dx.doi.org/10.1023/A:1019713018007

[2] Csaszar, A. (2005) Generalized Open Sets in Generalized To-pologies. Acta Mathematica Hungarica, 106, 53-66.
http://dx.doi.org/10.1007/s10474-005-0005-5

[3] Csaszar, A. (1997) Generalized Open Sets. Acta Mathematica Hungarica, 75, 65-87.
http://dx.doi.org/10.1023/A:1006582718102

[4] Csaszar, A. (2009) Products of Generalized Topologies. Acta Mathematica Hungarica, 123, 127-132.
http://dx.doi.org/10.1007/s10474-008-8074-x

[5] Csaszar, A. (2004) Separation Axioms for Generalized To-pologies. Acta Mathematica Hungarica, 104, 63-69.
http://dx.doi.org/10.1023/B:AMHU.0000034362.97008.c6

[6] 朱培勇, 雷银彬. 拓扑学导论[M]. 北京: 科学出版社, 2009: 44-50.

[7] 胡西超, 朱培勇. 一类新型半拓扑空间及其分离性质[J]. 理论数学, 2015, 5(4): 129-135.

[8] 陈道富, 钟健, 朱培勇. 关于L-半拓扑空间的一些注记[J]. 理论数学, 2015, 5(6): 272-277.

Top