﻿ 优势关系下直觉模糊信息系统的变精度与程度“逻辑或”粗糙集

# 优势关系下直觉模糊信息系统的变精度与程度“逻辑或”粗糙集The “Logical Or” Rough Set Theory of Variable Precision and Grade Based on Dominance Relation in Intuitionistic Fuzzy Information System

Abstract: The weighted score function is proposed in the intuitionistic fuzzy information system, and a new sort rule is defined on the basis. Dominance relation of the system is constructed based on the rule. Then the upper and lower approximation of variable precision and degree “logic or” based on the dominance relation is introduced. Moreover, the basic structure and important properties of the rough set region are studied and the corresponding algorithm is designed. Finally, a practical case is introduced to verify the feasibility and effectiveness of the theory, which provides a theoretical basis for the knowledge discovery of intuitionistic fuzzy order information systems.

[1] Zadeh, L.A. (1965) Fuzzy Sets. Information and Control, 8, 338-353.
http://dx.doi.org/10.1016/S0019-9958(65)90241-X

[2] Atanassov, K. (1986) Fuzzy Sets. Fuzzy Sets and Sys-tems, 20, 87-96.
http://dx.doi.org/10.1016/S0165-0114(86)80034-3

[3] 徐泽水. 直觉模糊信息集成理论及应用[M]. 北京: 科学出版社, 2008.

[4] 李梁, 张建刚. 基于粗糙集与关联规则的教师科研能力评价[J]. 重庆理工大学学报: 自然科学版, 2014, 28(1): 69-74.

[5] 陈媛, 苟光磊, 卢玲. 基于一致性准则的属性约简改进算法[J]. 重庆理工大学学报: 自然科学版, 2014, 28(5): 79-83.

[6] Pawlak, Z. (1982) Rough Sets. International Journal of Computer and Information Sciences, 11, 341-356.
http://dx.doi.org/10.1007/BF01001956

[7] Dembczyński, K.R., Pindur, R. and Susmaga, R. (2003) Domin-ance-Based Rough Set Classifier without Induction of Decision Rules. Electronic Notes Theory Computer Science, 82, 84-95.
http://dx.doi.org/10.1016/S1571-0661(04)80708-4

[8] Dembczyński, K.R., Pindur, R. and Susmaga, R. (2003) Generation of Exhaustive Set of Rules within Dominance- Based Rough Set Approach. Electronic Notes Theory Computer Science, 82, 96-107.
http://dx.doi.org/10.1016/S1571-0661(04)80709-6

[9] Greco, S., Matarazzo, B. and Slowinski, R. (2002) Rough Approximation by Dominance Relations. International Journal of Intelligence Systems, 17, 153-171.
http://dx.doi.org/10.1002/int.10014

[10] Yang, X.B., Yang, J.Y., Wu, C., et al. (2008) Dominance-Based Rough Set Approach and Knowledge Reductions in Incomplete Ordered Information Systems. Information Sciences, 178, 1219-1234.
http://dx.doi.org/10.1016/j.ins.2007.09.019

[11] Qian, Y.H., Dang, C.Y., Liang, J.Y., et al. (2009) Set-Valued Ordered Information Systems. Information Science, 179, 2809-2832.
http://dx.doi.org/10.1016/j.ins.2009.04.007

[12] Ziarko, W. (1993) Variable Precision Rough Set Model. Journal of Computer System Science, 46, 39-59.
http://dx.doi.org/10.1016/0022-0000(93)90048-2

[13] Yao, Y.Y. and Lin, T.Y. (1996) Generalization of Rough Sets Using Modal Logics. Intelligent Automation and Soft Computing, 2, 103-119.
http://dx.doi.org/10.1080/10798587.1996.10750660

[14] 张贤勇, 莫志文. 变精度粗糙集[J]. 模式识别与人工智能, 2004, 17(2): 151-155.

[15] Xu, W., Liu, S. and Wang, Q. (2010) The First Type of Grade Rough Set Based on Rough Membership Function. Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 4, 1922-1926.

[16] Yao, Y.Y. and Lin, T.Y. (1997) Graded Rough Set Approximations Based on Nested Neighborhood Systems. Proceedings of 5th European Congress on Intelligent Techniques and Soft Computing, 1, 196-200.

[17] 徐伟华. 序信息系统与粗糙集[M]. 北京: 科学出版社, 2013.

Top