Determination of Allura Red by Tx-100 Sensitization CdTe QDs Fluorescence Quenching Method

作者: 叶 柳 , 朱霞石 :扬州大学化学化工学院,江苏 扬州;

关键词: 诱惑红碲化镉量子点Tx-100增敏荧光猝灭Allura Red Cadmium Telluride Quantum Dots Tx-100 Sensitization Fluorescence Quenching

本文研究表面活性剂Tx-100介质中诱惑红对水溶性碲化镉量子点(CdTe QDs)荧光猝灭效应。建立Tx-100增敏CdTe QDs荧光猝灭法测定诱惑红(Allura red)新方法。结果表明:Tx-100介质中,Allura red对CdTe QDs荧光猝灭值增大,Allura red浓度在0.6~60.0 µg/mL范围内与CdTe QDs荧光猝灭值呈良好线性关系,其线性回归方程为ΔF=12.86c + 77.36 (c:µg/mL),线性相关系数为0.9939,检出限为0.35µg/mL(检出限定义为LOD = 3 σ/k,其中,σ是标准偏差,k是标准曲线的斜率)。本文初步探讨了增敏机制和在不同介质中的荧光量子产率。该法测定实际样品中Allura red,结果令人满意。

Abstract: The fluorescence quenching effect of Allura red on the water-soluble CdTe quantum dots (CdTe QDs) in surfactant Tx-100 medium was investigated. Based on the Tx-100 sensitization CdTe QDs fluorescence quenching, a novel method for the determination of Allura red was proposed. Under the optimal conditions, the relationship of Allura red concentration in the 0.6 - 60.0 µg/mL range and CdTe QDs fluorescence quenching value was linear. The linear regression equation and the linear correlation were ΔF = 12.86c-77.36 (c:µg/mL) and 0.9939, respectively. The limit of detection was found to be 0.35 µg/mL (the definition of limit of detection was LOD = 3σ/k, where σ was the standard deviation and k was the slope of the standard curve). The sensitized mechanism and fluorescence quantum yield in different media were discussed preliminarily. The method has been applied to the determination of Allura red in samples with satisfactory results.

文章引用: 叶 柳 , 朱霞石 (2016) Tx-100增敏碲化镉量子点荧光猝灭法分析诱惑红。 化学工程与技术, 6, 43-54. doi: 10.12677/HJCET.2016.63006


[1] Lilianne, A.-Z. and Ilbäck, N.-G. (2013) The Synthetic Food Colouring Agent Allura Red Ac (E129) Is Not Genotoxic in a Flow Cytometry-Based Micronucleus Assay in Vivo. Food and Chemical Toxicology, 59, 86-89.

[2] Abdullah, S.U., Badaruddin, M., Sayeed, S.A., Ali, R. and Riaz, M.N. (2008) Binding Ability of Allura Red with Food Proteins and Its Impact on Protein Digestibility. Food Chemistry, 110, 605-610.

[3] Fabio, G., Ugo, C., Eleonora, M. and Giorgio, C. (2013) Non-Target Screening of Allura Red AC Photodegradation Products in a Beverage through Ultra High Performance Liquid Chromatography Coupled with Hybrid Triple Quadrupole/Linear Ion Trap Mass Spectrometry. Food Chemistry, 136, 617-623.

[4] Mikkelsen, H., Larsen, J. and Tarding, F. (1978) Hyper-sensitivity Reactions to Food Colours with Special Reference to the Natural Colour Annatto Extract (Butter Colour). Archives of Toxicology Supplement, 1, 141-143.

[5] McCann, D., Barret, A., Cooper, C., Crumpler, D., Dalen, L., Grimshaw, K., Kitchin, E., Lok, K., Porteous, L., Prince, E., Sonuga-Barke, E., O’Warner, J. and Stevenson, J. (2007) Food Additives and Hyperactive Behaviour in 3-Year-Old and 8/9-Year-Old Children in the Community: A Randomised, Double-Blinded, Placebo-Controlled Trial. Lancet, 370, 1560-1567.

[6] Pourreza, N., Rastegarzadeh, S. and Larki, A. (2011) De-termination of Allura Red in Food Samples after Cloud Point Extraction Using Mixed Micelles. Food Chemistry, 126, 1465-1469.

[7] Mustafa, S., Yunus, E.U. and Mustafa, T. (2011) Spectrophotometric Determination of Trace Levels of Allura Red in Water Samples after Separation and Pre-concentration. Food and Chemical Toxicology, 49, 1183-1187.

[8] Xu, Y.L., Zhong, D.J. and Jia, J.P. (2008) Electrochemi-cal-Assisted Photodegradation of Allura Red and Textile Effluent Using a Half-Exposed Rotating TiO2/Ti Disc Electrode. Journal of Environmental Science & Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 43, 503-510.

[9] Berzas Nevado, J.J., Guiberteau-Cabanillas, C., Conten-to-Salcedo, A.M. and Martin-Villamuelas, R. (1999) Spectrophotometric Simultaneous Determination of Amaranth, Ponceau 4R, Allura Red and Red 2G by Partial Least Squares and Principal Component Regression Multivariate Cali-bration. Analytical Letters, 32, 1879-1898.

[10] Chanlon, S., Joly-Pottuz, L., Chatelut, M., Vittori, O. and Cretier, J.L. (2005) Determination of Carmoisine, Allura red and Ponceau 4R in Sweets and Soft Drinks by Differential Pulse Polarography. Journal of Food Composition and Analysis, 18, 503-515.

[11] Chen, X.H., Zhao, Y.G., Shen, H.Y., Zhou, L.X., Pan, S.D. and Jin, M.C. (2014) Fast Determination of Seven Synthetic Pigments from Wine and Soft Drinks Using Magnetic Disper-sive Solid-Phase Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry. Journal of Chromato-graphy A, 1346, 123-128.

[12] Zou, T.T., He, P.L. and Zhen, L. (2013) Determination of Seven Synthetic Dyes in Animal Feeds and Meat by High Performance Liquid Chromatography with Diode Array and Tandem Mass Detectors. Food Chemistry, 138, 1742-1748.

[13] 沈薇, 朱霞石. 钇纳米光谱探针合成及荧光增敏法分析橙皮苷[J]. 分析化学, 2012, 40(1): 150-154.

[14] 朱霞石, 孙静, 包莉, 郭荣. β-环糊精与CTAB微乳液协同增敏荧光法测定微量铋研究[J]. 应用化学, 2006, 23(3): 323-327.

[15] 冯刚, 柏苗, 朱霞石. 表面活性剂增敏分光光度法测定微量锡研究[J]. 光谱实验室, 2007, 24(6): 1059-1062.

[16] Zhu, X.S., Bao, L., Guo, R. and Wu, J. (2004) Determination of Aluminium(III) in Water Samples in a Microemulsion System by Spectrofluorimetry. Analytica Chi-mica Acta, 523, 43-48.

[17] 赵燕, 高楼军, 孙雪花, 柴红梅. 水溶性碲化镉量子点测定甲磺酸培氟沙星[J]. 光谱实验室, 2012, 29(3): 1749- 1752.

[18] Tan, X.P., Liu, S.P., He, Y.Q. and Yang, J.D. (2014) Quantum Dots (QDs) Based Fluorescence Probe for the Sensitive Determination of Kaempferol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 66-72.

[19] 张浩, 王芳, 马静, 卞伟. 栀子甙对碲化镉量子点的荧光淬灭作用[J]. 化学研究, 2015, 26(1): 64-69.

[20] Zhu, X.S. and He, Y. (2007) Spectroscopic Probe-Aluminum(III)-Chrome Azure S Enhanced Determination of Serum Albumin in Microemulsion Medium. Ana-lytical Letters, 40, 103-112.

[21] 龚爱琴, 朱霞石, 郭荣, 马晓芹. Triton X-100微乳液中铈与L-色氨酸荧光反应的研究与应用[J]. 光谱学与光谱分析, 2008, 28(4): 900-903.

[22] 朱霞石, 郭荣, 张晓红. 非离子型微乳液对荧光猝灭法测定微量镍的增敏作用[J]. 光谱学与光谱分析, 2001, 21(4): 515-517.

[23] Zhang, L.J., Xu, C.L. and Li, B.X. (2009) Simple and Sensitive Detection Method for Chro-mium(VI) in Water Using Glutathione—Capped CdTe Quantum Dots as Fluorescent Probes. Microchimica Acta, 166, 61-68.

[24] Zhu, X.S., Gong, A.Q. and Yu, S.H. (2008) Fluorescence Probe Enhanced Spectrofluorimetric Method for the Determination of Gatifloxacin in Pharmaceutical Formulations and Biological Fluids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69, 478-482.

[25] 赵晶, 魏永巨. 曲通X-100的荧光光谱与荧光量子产率[J]. 光谱学与光谱分析, 2004, 26(8): 1523-1525.

[26] Minioti, K.S., Sakellariou, C.F. and Thomaidis, N.S. (2007) Determination of 13 Synthetic Food Colorants in Water- Soluble Foods by Reversed-Phase High-Performance Liquid Chromatography Coupled with Diode-Array Detector. Analytica Chimica Acta, 583, 103-110.

[27] Erdal, D., Emine, B., Murat, K. and Feyyaz, O. (2002) Spectrophotometric Multicomponent Determination of Sunset Yellow, Tartrazine and Allura Red in Soft Drink Powder by Double Divisor-Ratio Spectra Derivative, Inverse Least- Squares and Principal Component Regression Methods. Talanta, 58, 579-594.

[28] Zhang, Y., Zhang, X. and Lu, X. (2010) Multi-Wall Carbon Nanotube Film-Based Electrochemical Sensor for Rapid Detection of Ponceau 4R and Allura Red. Food Che-mistry, 122, 909-913.

[29] Li, W.J., Zhou, X., Tong, S.S. and Jia, Q. (2013) Poly Monolithic Column Embedded with γ-Alumina Nanoparticles Microextraction Coupled with High-Performance Liquid Chromatography for the Determination of Synthetic Food Dyes in Soft Drink Samples. Talanta, 105, 386-392.

[30] 中国国家标准化管理委员会. GB/T 5009.141-2003食品中合成着色剂的测定[S]. 北京: 中华人民共和国卫生部, 2004.

[31] Liu, Z.Q., Yin, P.F. and Gong, H.P. (2012) De-termination of Rifampicin Based on Fluorescence Quenching of GSH Capped CdTe/ZnS QDs. Journal of Luminescence, 132, 2484-2488.