金属掺杂TiO2界面层对非晶硅电池效率的影响研究
Study on the Effect of Metal-Doped TiO2 Interface Layer on the Conversion Efficiency of Amorphous Silicon Solar Cell

作者: 姚赚赚 , 黄忠兵 :湖北大学物理与电子技术学院,湖北 武汉 ; 高 云 :湖北大学材料科学与工程学院,湖北 武汉 ; 夏晓红 , 鲍钰文 :湖北大学材料科学与工程学院,湖北 武汉;

关键词: Nb-TiO2非晶硅太阳能电池界面效应Nb-TiO2 Amorphous Silicon Solar Cell Interface Effect

摘要:
通过在PIN结构非晶硅(a-Si)电池的透明导电电极(TCO)和P-型非晶Si层间插入一层Nb掺杂的TiO2层,用于改善界面性质并提高电池转化效率。系统研究了不同厚度的Nb掺杂TiO2层薄膜的透光性以及在有光照和无光照时的I-V特性。此外,也比较了具有相同厚度的Nb-TiO2,Zn-TiO2以及纯的TiO2薄膜的光电响应。研究结果表明,厚度为6 nm的Nb-TiO2纳米薄膜具有最佳的光电响应。具有不同厚度Nb-TiO2插入层的非晶硅薄膜电池的性能测试表明,插入6 nm厚Nb-TiO2纳米薄膜的电池有效减小了寄生串联电阻,改善了填充因子,相比无插入层电池光电转化效率提高了8%。

Abstract: In the present work, a layer of Nb-doped TiO2 nano-film has been inserted between TCO and P-Si layers in the amorphous Si solar cell with PIN structure to improve the interface properties and enhance the conversion efficiency. The transmittances of Nb-doped TiO2 thin films with various thicknesses were measured and the corresponding I-V curves with and without light illumination were compared. In addition, the photoelectric response was compared for Nb-TiO2, Zn-TiO2 and pure TiO2 nano-films with the same thickness. It was found that Nb-TiO2 film with thickness of 6 nm has the best photoelectric response. The conversion efficiency of the amorphous Si solar cell with various Nd-doped TiO2 thicknesses showed that the cell inserted with 6 nm Nd-TiO2 layer effectively reduces the series resistance, improves the filling factor and enhances the conversion efficiency by 8% compared with the cell without inserted layer.

文章引用: 姚赚赚 , 高 云 , 夏晓红 , 鲍钰文 , 黄忠兵 (2016) 金属掺杂TiO2界面层对非晶硅电池效率的影响研究。 材料科学, 6, 142-148. doi: 10.12677/MS.2016.63018

参考文献

[1] 蔡宁, 耿新华, 赵颖. 非晶/微晶硅叠层电池中间层的研究进展[J]. 太阳能学报, 2009, 30(3): 1-5.

[2] Yang, T., Song, S., Li, Y., Xin, Y., Du, G., Lv, M. and Han, S. (2012) The Enhanced Conductivity and Stability of AZO Thin Films with a TiO2 Buffer Layer. Physica B: Condensed Matter, 407, 4518-4522.
http://dx.doi.org/10.1016/j.physb.2012.08.015

[3] Kaplan, R., Kaplan, B. and Hegedus, S.S. (2010) A Compara-tive Study of Photoconductivity and Carrier Transport in a-Si:H p–i–n Solar Cells with Different Back Contacts. Sol-id-State Electronics, 54, 22-27.
http://dx.doi.org/10.1016/j.sse.2009.09.008

[4] Chang, P.K., Hsieh, P.T., Lu, C.H., Yeh, C.H. and Houng, M.P. (2011) Development of High Efficiency p–i–n Amorphous Silicon Solar Cells with the p-μc-Si:H/p-a-SiC:H Double Window Layer. Solar Energy Materials and Solar Cells, 95, 2659-2663.
http://dx.doi.org/10.1016/j.solmat.2011.05.036

[5] Fang, L., Baik, S.J. and Lim, K.S. (2014) Transition Metal Oxide Window Layer in Thin Film Amorphous Silicon Solar Cells. Thin Solid Films, 556, 515-519.
http://dx.doi.org/10.1016/j.tsf.2014.01.037

[6] Tsvetkov, N.A., Larina, L.L., Shevaleevskiy, O., Al-Ammar, E.A. and Ahn, B.T. (2012) Design of Conduction Band Structure of TiO2 Electrode Using Nb Doping for Highly Efficient Dye-Sensitized Solar Cells. Progress in Photovoltaics: Research and Applications, 20, 904-911.
http://dx.doi.org/10.1002/pip.2253

[7] Zhu, J., Yu, Z., Burkhard, G.F., Hsu, C.M., Connor, S.T., Xu, Y., Wang, Q., McGehee, M., Fan, S. and Cui, Y. (2009) Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Letters, 9, 279-82.
http://dx.doi.org/10.1021/nl802886y

[8] Yin, X., Guo, Y., Xue, Z., Xu, P., He, M. and Liu, B. (2015) Perfor-mance Enhancement of Perovskite-Sensitized Mesoscopic Solar Cells Using Nb-doped TiO2 Compact Layer. Nano Research, 8, 1997-2003.
http://dx.doi.org/10.1007/s12274-015-0711-4

[9] Yan, B., Yue, G., Sivec, L., Yang, J., Guha, S. and Jiang, C.S. (2011) Innovative Dual Function nc-SiOx:H Layer Leading to a >16% Efficient Multi-Junction Thin-Film Silicon Solar Cell. Applied Physics Letters, 99, 113512.
http://dx.doi.org/10.1063/1.3638068

[10] Söderström, K., Bugnon, G., Biron, R. and Pahud, C. (2012) Thin-Film Silicon Triple-Junction Solar Cell with 12.5% Stable Efficiency on Innovative Flat Light-Scattering Substrate. Journal of Applied Physics, 112, 114503.
http://dx.doi.org/10.1063/1.4768272

分享
Top