Jahangir图的修改的维纳指数,Harary指数和乘法维纳指数计算
The Modified Wiener Index, Calculation of Harary Exponent and Multiplicative Wiener Index of Jahangir Graphs

作者: 张 晶 , 高 炜 :云南师范大学信息学院,云南 昆明;

关键词: 维纳指数修改的维纳指数Harary指数乘法维纳指数Wiener Index Modified Wiener Index Harary Index Multiplicative Wiener Index

摘要:
化合物、材料和药物一般可以用图模型来表示,其中原子用顶点来表示,原子之间的化学键用边来表示。而定义在分子图上的拓扑指数可帮助研究者了解该化学结构的化学、药理学特征。本文给出Jahangir图J3,m的修改的维纳指数,Harary指数和乘法维纳指数计算公式。

Abstract: Compounds, materials and drugs can be represented as a graph model, where the atom is represented by a vertex and a chemical bond between atoms is expressed by an edge. The topo-logical indices defined on the molecular graph can help researchers understand the chemical, pharmacological characteristics of the chemical structure. In this paper, we determine the modified Wiener index, Hararyindex and multiplicative Wiener index of Jahangir graph J3,m.

文章引用: 张 晶 , 高 炜 (2016) Jahangir图的修改的维纳指数,Harary指数和乘法维纳指数计算。 运筹与模糊学, 6, 46-50. doi: 10.12677/ORF.2016.62006

参考文献

[1] 祝宝宣. 代数图论中的若干问题[D]: [博士学位论文]. 大连: 大连理工大学, 2011.

[2] 于玲, 叶永升. 路与圈的联图的Wiener指数[J]. 淮北师范大学学报(自然科学版), 2011, 32(1): 1-3.

[3] Wiener, H. (1947) Structural De-termination of Paraffin Boiling Points. Journal of the American Chemical Society, 69, 17-20.

[4] 于玲, 叶永升. 路的笛卡尔积图的Wiener指数[J]. 淮阴师范学院学报(自然科学版), 2012, 11(1): 13-16.

[5] Gao, Y., Gao, W. and Liang, L. (2014) Revised Szeged Index and Revised Edge Szegeged Index of Certain Special Molecular Graphs. In-ternational Journal of Applied Physics and Mathematics, 4, 417-425.
http://dx.doi.org/10.17706/ijapm.2014.4.6.417-425

[6] Bondy, J.A. and Murtyu, S.R. (1976) Graph theory with applications. Macmillan Press, London, 1-40.
http://dx.doi.org/10.1007/978-1-349-03521-2_1

[7] Xi, W.F. and Gao, W. (2014) Geometric-Arithmetic Index and Zagreb Indices of Certain Special Molecular Graphs. Journal of Advances in Chemistry, 10, 2254-2261.

[8] 高云, 高炜. 修改的维纳指数和修改的超维纳指数的若干结果[J]. 生物物理学, 2015, 3(3): 59-66.

[9] 许冬冬, 高炜. 超维纳指数的若干结果[J]. 云南师范大学学报(自然科学版), 2014, 34(5): 46-50.

[10] Farahani, M.R. and Gao, W. (2016) On Multiplicative and Redefined Version of Zagreb Indices of v-Phenylenic Nanotubes and Nanotorus. British Journal of Mathematics & Computer Science, 13, 1-8.
http://dx.doi.org/10.9734/BJMCS/2016/22752

分享
Top