致密气藏分段压裂水平井产能研究
A Study on Production Analysis of Multi-Fractured Horizontal Wells in Tight Gas Reservoirs

作者: 赵二猛 :东北石油大学石油工程学院,黑龙江 大庆; 王 龙 :中海石油(中国)有限公司天津分公司渤海石油研究院,天津; 杨春城 :大庆油田有限责任公司第三采油厂,黑龙江 大庆;

关键词: 致密气藏分段压裂水平井产能模型产能分析伽辽金有限元Tight Gas Reservoirs Multi-Fractured Horizontal Well Production Model Production Analysis Galerkin Finite Element Method

摘要:
建立了致密气藏分段压裂水平井产能模型,使用伽辽金有限元方法对模型进行求解,最后通过编程计算绘制了产能及产能导数曲线,并对曲线的形态特征及影响曲线形态的因素进行了分析。研究结果表明:产能曲线主要分为6个流动阶段;水力裂缝导流能力主要影响压裂水平井早中期产能大小,导流能力越大,产能越大;裂缝半长越大,裂缝径向流持续的时间越短,但裂缝径向流及椭圆流阶段的产能越大;裂缝条数对整个生产阶段的产能都有重要影响,压裂裂缝条数越大,压裂水平井产能也越大;裂缝间距越大,压裂裂缝之间发生干扰的时间就越晚,裂缝径向流结束的就越晚,而且产能越大。研究结果可为致密气藏分段压裂水平井产能分析提供科学依据。

Abstract: A new production analysis model of multi-fractured horizontal wells in tight gas reservoir is es-tablished, the solution is obtained by Galerkin finite element method. The dimensional production and its derivative curves are plotted by computer programming, and a sensitivity analysis is conducted to study impacts on production curves. The results show that there are six different flow regimes observed in production curves. The hydraulic fracture conductivity mainly affects the early-to-mid flow regimes, and the bigger the value is, the higher the production is. With the increase of hydraulic fracture half-length, the fracture radial flow becomes shorter, but the production is bigger in fracture radial flow and elliptical flow regimes. The number of hydraulic fractures has great effect on the whole flow regimes, and the production will be bigger for more hydraulic fractures. With the increase of hydraulic fracture spacing, the time of interference between the hydraulic fractures will be latter, then the occurrence of hydraulic fractures radial flow regime will postpone, and the production will be bigger in the corresponding flow regimes. The new model and obtained results can play a guiding role in analyzing production for multi-fractured horizontal well in tight gas reservoirs.

文章引用: 赵二猛 , 王 龙 , 杨春城 (2016) 致密气藏分段压裂水平井产能研究。 自然科学, 4, 163-170. doi: 10.12677/OJNS.2016.42020

参考文献

[1] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187.

[2] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136.

[3] 李建忠, 郭彬程, 郑民, 等. 中国致密砂岩气主要类型、地质特征与资源潜力[J]. 天然气地球科学, 2012, 23(4): 607-615.

[4] 吴奇, 胥云, 张守良, 等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4): 706- 714.

[5] Gringarten, A.C. and Ramey, H.J. (1973) The Use of Source and Green’s Function in Solving Unsteady-Flow Problem in Reservoir. SPE Journal, 13, 285-296.

[6] Ozkan, E. (1988) Performance of Horizontal Wells. Ph.D. Dissertation, The University of Tulsa, Tulsa.

[7] Zerzar, A., Bettam, Y. and Tiab, D. (2003) Interpretation of Multiple Hydraulically Fractured Horizontal Wells in Closed Systems. Canadian International Petroleum Conference, Calgary, 8-10 June 2003, SPE 84888.

[8] 姚军, 刘丕养, 吴明录. 裂缝性油气藏压裂水平井试井分析[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 107-113, 119.

[9] Ozkan, E., Brown, M., Raghavan, R., et al. (2009) Comparison of Fractured Horizontal Well Performance in Conventional and Unconventional Reservoirs. SPE Western Regional Meeting, San Jose, 24-26 March 2009, SPE121290-MS.

[10] Ozkan, E., Brown, M., Raghavan, R., et al. (2011) Comparison of Fractured-Horizontal Well Performance in Tight Sand and Shale Reservoirs. SPE Reservoir Evaluation & Engineering, 14, 248-259.

[11] Stalgorova, E. and Mattar, L. (2012) Practical Analytical Model to Simulate Production of Horizontal Wells with Branch Fractures. Canadian Unconventional Resources Conference, Calgary, 30 October-1 November 2012, SPE 162515.

[12] 尹洪军, 赵二猛, 付京, 等. 页岩气藏压裂水平井五区复合模型产能分析[J]. 西南石油大学学报(自然科学版), 2015, 37(3): 9-16.

[13] 苏玉亮, 王文东, 盛广龙. 体积压裂水平井复合流动模型[J]. 石油学报, 2014, 35(3): 504-510.

[14] 赵超. 致密气藏多段压裂水平井非稳态复合产能模型[J]. 断块油气田, 2015, 22(5): 651-655.

[15] Karimi-Fard, M. and Firoozabadi, A. (2003) Numerical Simulation of Water Injection in Fractured Media Using the Discrete-Fracture Model and the Galerkin Method. SPE Reservoir Evaluation & Engineering, 6, 117-126.

分享
Top