缺陷钴纳米环磁化动力学研究
Study of Magnetic Dynamic Properties for Defect Co Nanorings

作者: 刘劲尧 , 黄盛凯 , 许燕婷 , 庄定国 , 吴金铃 , 叶晴莹 * , 黄志高 :福建师范大学物理与能源学院,福建省量子调控与新能源材料重点实验室,福建 福州;

关键词: Monte Carlo方法缺陷纳米环磁滞回线自旋组态Monte-Carlo Simulation Defect Nanorings Hysteresis Loop Spin Configuration

摘要:
利用Monte Carlo (蒙特卡洛)方法结合快速傅立叶变换,研究了不同缺陷环半径、不同缺陷位置的纳米环磁特性,模拟结果表明:纳米环系统缺陷程度较小时,其磁特性与对称纳米环系统接近;而当缺陷程度较大时,由于其几何形状与对称单纳米环相差甚远,系统的磁特性与对称纳米环系统差别较大。此外,研究还发现,缺陷程度较大时,系统虽保留了对称纳米环系统的主要特征(涡旋态和洋葱态),但相比起来,涡旋态的稳定性更低,过渡状态增加,整体的磁化过程也更为复杂。

Abstract: Based on the Monte-Carlo simulation and fast Fourier transformation micro-magnetism method, the magnetic properties of Co nanorings with different defect locations are studied. The simula-tion results show that the magnetic properties of the nanorings with small defect degree are similar to those of symmetric nanorings. With the defect degree increasing, the magnetic dynamic behavior of defect nanorings is obviously different from that of symmetric nanorings. The results also indicate that the defect system keeps the main magnetic characteristic of the symmetric nanorings (such as vortex state and onion state). Compared to the symmetric nanorings, the stability of defect nanorings is weak. Furthermore, with the defect degree increasing, the number of transition states in nanoring system increases, and magnetization process becomes complex.

文章引用: 刘劲尧 , 黄盛凯 , 许燕婷 , 庄定国 , 吴金铃 , 叶晴莹 , 黄志高 (2016) 缺陷钴纳米环磁化动力学研究。 应用物理, 6, 100-105. doi: 10.12677/APP.2016.65014

参考文献

[1] Daday, C., Manolescu, A., Marinescu, D.C. and Gudmundsson, V. (2011) Electronic Charge and Spin Density Distribution in a Quantum Ring with Spin-Orbit and Coulomb Interactions. Physical Review B, 84, 850-858. http://dx.doi.org/10.1103/PhysRevB.84.115311

[2] Kim, D., Lee, D.R., Choi, Y., Metlushko, V., Park, J., Kim, J.Y. and Lee, K.B. (2012) Inducing Vortex Formation in Multilayered Circular Dots Using Remanent Curves. Applied Physics Letters, 101, 722-730. http://dx.doi.org/10.1063/1.4766347

[3] Gubbiotti, G., Tacchi, S., Madami, M., Carlotti, G., Jain, S., Adeyeye, A.O. and Kostylev, M.P. (2012) Collective Spin Waves in a Bicomponent Two-Dimensional Magnonic Crystal. Applied Physics Letters, 100, 162407-162407-5. http://dx.doi.org/10.1063/1.4704659

[4] Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. and Ono, T. (2000) Magnetic Vortex Core Observation in Circular Dots of Permalloy. Science, 289, 930-932. http://dx.doi.org/10.1126/science.289.5481.930

[5] Wachowiak, A., Wiebe, J., Bode, M., Pietzsch, O., Morgenstern, M., Wiesendanger, R. and Wiesendanger, R. (2002) Direct Observation of Internal Spin Structure of Magnetic Vortex Cores. Science, 298, 577-580. http://dx.doi.org/10.1126/science.1075302

[6] Vaz, C.A.F., Lopez-Diaz, L., Kläui, M., Bland, J.A.C., Monchesky, T.L., Unguris, J. and Cui, Z. (2003) Direct Observation of Remanent Magnetic States in Epitaxial fcc Co Small Disks. Physical Review B, 67, 1393-1406. http://dx.doi.org/10.1103/PhysRevB.67.140405

[7] Kong, X.Y., Ding, Y.R., Yang, R.S. and Wang, L.Z. (2004) Single-Crystal Nanorings Formed by Epitaxial Self-Coil- ing of Polar Nanobelts. Science, 303, 1348-1351. http://dx.doi.org/10.1126/science.1092356

[8] Corredor, E.C., Coffey, D., Arnaudas, J.I., Ibarra, A., Ross, C.A. and Ciria, M. (2013) Transverse Magnetization in Cu/Ni/Cu Epitaxial Nanorings. The European Physical Journal B, 86, 134-1-7. http://dx.doi.org/10.1140/epjb/e2013-30935-4

[9] Zhu, X., Malac, M., Liu, Z., Qian, H., Metlushko, V. and Freeman, M.R. (2005) Broadband Spin Dynamics of Permalloy Rings in the Circulation State. Applied Physics Letters, 86, 262502-262502-3. http://dx.doi.org/10.1063/1.1957107

[10] Cho, K., Loget, G. and Corn, R.M. (2014) Lithographically Patterned Nanoscale Electrodeposition of Plasmonic, Bimetallic, Semiconductor, Magnetic, and Polymer Nanoring Arrays. The Journal of Physical Chemistry C, 118, 28993- 29000. http://dx.doi.org/10.1021/jp501783z

[11] Huang, Z.G., Chen, Z.G., Peng, K., Wang, D.H., Zhang, F.M., Zhang, W.Y. and Du, Y.W. (2004) Monte Carlo Simulation of Tunneling Magnetoresistance in Nanostructured Materials. Physical Review B, 69, 094420-1-094420-7. http://dx.doi.org/10.1103/PhysRevB.69.094420

[12] Ye, Q.Y., Chen, S.Y., Zhong, K.H., Chen, X.L. and Huang, Z.G. (2013) Magnetic Properties for Magnetic Quantum Dot Arrays: Fast Fourier Transformation and Micromagnetism Study. Materials Science Forum, 749, 432-436. http://dx.doi.org/10.4028/www.scientific.net/MSF.749.432

[13] 林枝钦. 纳米环的磁特性的数值计算[D]: [硕士学位论文]. 福州: 福建师范大学, 2009.

[14] Zhong, K.H., Feng, Q., Weng, Z.Z., et al. (2005) A Fast Fourier Transformation Micromagnetism Method. Chinese Journal of Computation Physic, 22, 534-538.

分享
Top