春季和秋季桑沟湾浮游植物对磷的响应
Phytoplankton Responses to Phosphorus in Sanggou Bay in Spring and Autumn

作者: 徐文琦 , 刘素美 :中国海洋大学,海洋化学理论与工程技术教育部重点实验室,山东 青岛;

关键词: 桑沟湾营养盐浮游植物粒级结构细胞结合态磷Sanggou Bay Nutrients Phytoplankton Size Structure Cell Associated Phosphorus

摘要:
于2014年5月和9月对桑沟湾不同养殖区营养盐分布、浮游植物粒级结构和微型浮游植物(nanophy- toplankton, 2~20 μm)、微微型浮游植物(picophytoplankton, 0.2~2 μm)细胞不同结合态磷含量及影响因素进行了研究。结果表明:受养殖活动的影响,桑沟湾营养盐分布具有明显的季节变化,春季营养盐浓度低于秋季,春季和秋季磷酸盐是桑沟湾浮游植物生长的限制性营养盐;春季叶绿素a (Chla)含量从湾口向湾顶逐渐降低,浮游植物以nano-级浮游植物为主,秋季Chla与春季分布趋势相反,从湾口向湾顶逐渐升高,浮游植物以nano-级和pico-级为主,春季和秋季,从湾口向湾顶浮游植物呈小型化趋势;桑沟湾微型和微微型浮游植物细胞总磷均以细胞内结合态磷为主,占细胞总磷的比例为64%~93%,微型浮游植物细胞不同结合态磷的含量显著高于微微型浮游植物。微型和微微型浮游植物细胞总磷和细胞内结合态磷的含量与营养盐的相关性分析结果显示,微型浮游植物细胞总磷和细胞内结合态磷的含量与DIP、DSi有显著的正相关关系(r ≥ 0.796),而微微型浮游植物细胞不同结合态磷的含量与各项营养盐均没有显著的相关性(r < |0.402|)。

Abstract: Nutrient distribution, phytoplankton size structure and phytoplankton cell associated phosphorus characters of nanophytoplankton and picophytoplankton were studied during the two cruises in May and September of 2014. The results show that nutrients distributions have seasonal variation in Sanggou Bay due to aquaculture activities. Nutrient concentrations are lower in spring than in autumn. In spring and autumn, phosphorus would limit phytoplankton growth. Content of Chlo-rophyll a decreases from the east of Sanggou Bay to the west in spring, while in autumn the dis-tribution trend is opposite. Phytoplankton is mainly dominated by nanophytoplankton in spring, while in autumn both nano- and pico-phytoplankton are the dominance of the community. From bay mouth to bay head, average size of phytoplankton is reduced both in spring and autumn. In- tracellular phosphorus is dominance of nano- and pico-phytoplankton total cellular phosphorus, which contributes to 64% - 93%. The results of correlation analysis between cell associated phos- phorus contents and nutrients indicated a distinct positive correlation between total cellular phos-phorus, intracellular phosphorus of nanophytoplankton and DIP, DSi (r ≥ 0.796), but no correlation between cell associated phosphorus of picophytoplankton and nutrients (r < |0.402|).

文章引用: 徐文琦 , 刘素美 (2016) 春季和秋季桑沟湾浮游植物对磷的响应。 海洋科学前沿, 3, 26-37. doi: 10.12677/AMS.2016.32005

参考文献

[1] Thingstad, T.F., Kromm M.D., Mantoura, R.F.C., et al. (2005) Nature of Phosphorus Limitation in the Ultraoligotrophic Eastern Mediterranean. Science, 309, 1068-1071.
http://dx.doi.org/10.1126/science.1112632

[2] Wu, J., Sunda, W., Boyle, E.A., et al. (2000) Phosphate Depletion in the Western North Atlantic Ocean. Science, 289, 759-762.
http://dx.doi.org/10.1126/science.289.5480.759

[3] Sañudo-Wilhelmy, S.A., Kustka, A.B., Gobler, C.J., et al. (2001) Phosphorus Limitation of Nitrogen Fixation by Trichodesmium in the Central Atlantic Ocean. Nature, 411, 66-69.
http://dx.doi.org/10.1038/35075041

[4] Mills, M.M.C., Ridame, M., Davey, J., et al. (2004) Iron and Phosphorus Co-Limit Nitrogen Fixation in the Eastern Tropical North Atlantic. Nature, 429, 292-294.
http://dx.doi.org/10.1038/nature02550

[5] Diaz, F., Raimbault, P., Boudjellal, B., et al. (2001) Early Spring Phosphorus Limitation of Primary Productivity in a NW Mediterranean Coastal Zone (Gulf of Lions). Marine Ecology Progress Series, 211, 51-62.
http://dx.doi.org/10.3354/meps211051

[6] Ammerman, J.W., Hood, R.R., Case, D.A., et al. (2003) Phosphorus Deficiency in the Atlantic: An Emerging Paradigm in Oceanography. Eos, Transactions American Geophysical Union, 84, 165-170.
http://dx.doi.org/10.1029/2003EO180001

[7] Redfield, A.C. (1958) The Biological Control of Chemical Factors in the Environment. American Scientist, 46, 205- 221.

[8] Quigg, A., Finkel, Z.V., Irwin, A.J., et al. (2003) The Evolutionary Inheritance of Elemental Stoichiometry in Marine Phytoplankton. Nature, 425, 291-294.
http://dx.doi.org/10.1038/nature01953

[9] Sañudo-Wilhelmy, S.A., Tovar-Sanchez, A., Fu, F.X., et al. (2004) The Impact of Surface-Adsorbed Phosphorus on Phytoplankton Redfield Stoichiometry. Nature, 432, 897-901.
http://dx.doi.org/10.1038/nature03125

[10] Fu, F.X., Zhang, Y., Leblanc, K., et al. (2005) The Biological and Biogeochemical Consequences of Phosphate Scavenging onto Phytoplankton Cell Surfaces. Limnology and Oceanog-raphy, 50, 1459-1472.
http://dx.doi.org/10.4319/lo.2005.50.5.1459

[11] Tilman, D., Kilham, S.S. and Kilham, P. (1982) Phytoplankton Community Ecology: The Role of Limiting Nutrients. Annual Review of Ecology and Systematics, 13, 349-372.
http://dx.doi.org/10.1146/annurev.es.13.110182.002025

[12] Glibert, P.M., Anderson, D.M., Gentien, P., et al. (2005) The Global, Complex Phenomena of Harmful Algal Blooms. Oceanography, 18, 136-147.
http://dx.doi.org/10.5670/oceanog.2005.49

[13] Shi, J., Wei, H., Zhao, L., et al. (2011) A Physical-Biological Coupled Aquaculture Model for a Suspended Aquaculture Area of China. Aquaculture, 318, 412-424.
http://dx.doi.org/10.1016/j.aquaculture.2011.05.048

[14] 张继红. 滤食性贝类养殖活动对海域生态系统的影响及生态容量评估[D]: [博士学位论文]. 青岛: 黄海水产研究所, 2008.

[15] Mao, Y.Z., Zhou, Y., Yang, H.S., et al. (2006) Seasonal Variation in Metabolism of Cultured Pacific Oyster, Crassostreagigas, in Sanggou Bay, China. Aqua-culture, 253, 322-333.
http://dx.doi.org/10.1016/j.aquaculture.2005.05.033

[16] 史洁. 物理过程对半封闭海湾养殖容量影响的数值研究[D]: [博士学位论文]. 青岛: 中国海洋大学, 2009.

[17] 张继红, 蒋增杰, 王巍, 等. 桑沟湾营养盐时空分布及营养盐限制分析[J]. 渔业科学进展, 2010, 31(4): 16-25.

[18] 曲克明, 宋云利, 徐勇, 等. 桑沟湾养殖水域春季和夏季营养限制的现场实验[J]. 海洋环境科学, 2008, 27(2): 124-127.

[19] 金杰. 典型海域浮游植物对磷的响应及营养盐动力学研究[D]: [博士毕业论文]. 青岛: 中国海洋大学, 2014.

[20] 刘慧, 方建光, 董双林, 等. 莱州湾和桑沟湾养殖海区浮游植物的研究II[J]. 海洋水产研究, 2003, 24(3): 20-28.

[21] 张莉红, 张学雷, 李瑞香, 等. 桑沟湾扇贝养殖对甲藻数量的影响[J]. 海洋科学进展, 2005, 23(3): 342-346.

[22] Tovar-Sanchez, A., Sañudo-Wilhelmy, S.A., Garcia-Vargas, M., et al. (2003) A Trace Metal Clean Reagent to Remove Surface-Bound Iron from Marine Phytoplankton. Marine Chemistry, 82, 91-99.
http://dx.doi.org/10.1016/S0304-4203(03)00054-9

[23] Grasshoff, K., Kremling, K. and Ehrhardt, M., Eds. (1999) Methods of Seawater Analysis. 3rd Edition, Wiley-VCH, Weinheim, 159-228.
http://dx.doi.org/10.1002/9783527613984

[24] Aspila, K.I., Agemian, H. and Chau, A.S.Y. (1976) A Semiauto-matic Method for the Determination of Inorganic, Organic and Total Phosphorus in Sediment. Analyst, 101, 187-197.
http://dx.doi.org/10.1039/an9760100187

[25] 慕建东, 董玮, 陈碧娟, 等. 桑沟湾浮游植物生态特征[J]. 渔业科学进展, 2009, 30(3): 91-96.

[26] 李超伦, 张永山, 孙松, 等. 桑沟湾浮游植物种类组成、数理分布及其季节变化[J]. 渔业科学进展, 2010, 31(4): 1-8.

[27] Bertilsson, S., Berglund, O., Karl, D.M., et al. (2003) Ele-mental Composition of Marine Prochlorococcus and Synechococcus: Implications for the Ecological Stoichiometry of the Sea. Limnology and Oceanography, 48, 1721-1731.
http://dx.doi.org/10.4319/lo.2003.48.5.1721

[28] Bricaud, A., Claustre, H., Ras, J., et al. (2004) Natural Variability of Phytoplanktonic Absorption in Oceanic Waters: Influence of the Size Structure of Algal Populations. Journal of Geophysical Research: Oceans, 109.

[29] 魏玉秋, 孙军, 丁昌玲, 等. 2014年夏季南海北部超微型浮游植物分布及环境因子影响[J]. 海洋学报, 2015, 37(12): 56-65.

[30] Justić, D., Rabalais, N.N., Turner, R.E., et al. (1995) Changes in Nutrient Structure of River-Dominated Coastal Waters: Stoichiometric Nutrient Balance and Its Consequences. Estuarine, Coastal and Shelf Science, 40, 339-356.
http://dx.doi.org/10.1016/S0272-7714(05)80014-9

[31] 乐凤凤, 蔡昱明, 孙军, 等. 2009年冬、夏季南海北部超微型浮游生物的分布特征及其环境相关分析[J]. 海洋学报, 2015, 37(12): 41-55.

[32] 李瑞环. 生态养殖活动影响下营养盐动力学研究——以桑沟湾为例[D]: [博士毕业论文]. 青岛: 中国海洋大学, 2014.

[33] 张渊洲, 张健林, 杨清松, 等. 南海北部春季微微型浮游植物丰度的分布[J]. 生物学杂志, 2015, 32(5): 58-62.

[34] 孙珊, 刘素美, 任景玲, 等. 桑沟湾养殖海域营养盐和沉积物-水界面扩散通量研究[J]. 海洋学报, 2010, 32(6): 108-117.

[35] 乐凤凤, 刘诚刚, 郝锵, 等. 2006年秋季长江口及邻近海域微微型浮游生物的分布特征及环境影响因素[J]. 海洋学研究, 2011, 29(3): 108-117.

[36] 宋云利, 崔毅, 孙耀, 等. 桑沟湾养殖海域营养状况及其影响因素分析[J]. 海洋水产研究, 1996, 17(2): 41-51.

[37] Mooy, B.A.S.V., Fredricks, H.F., Pedler, B.E., et al. (2009) Phytoplankton in the Ocean Use Non-Phosphorus Lipids in Response to Phosphorus Scarcity. Nature, 458, 69-72.
http://dx.doi.org/10.1038/nature07659

[38] 曾呈奎, 吴超元, 孙国玉. 温度对海带孢子体生长和发育的影响[J]. 植物学报, 1957, 6(2): 103-130.

[39] 赵俊, 周诗赉, 孙耀, 等. 桑沟湾增养殖水文环境研究[J]. 海洋水产研究, 1996, 17(2): 68-79.

[40] 郝林华, 孙丕喜, 郝建民, 等. 桑沟湾海域叶绿素a的时空分布特征及其影响因素研究[J]. 生态环境学报, 2012, 21(2): 338-345.

[41] Kautsky, N. (1987) Role of Biodeposition by Mytilusedulis in the Ciculation of Matter and Nutrients in a Baltic Coastal Ecosystim. Marine Eco-logical Progress Series, 38, 201-212.
http://dx.doi.org/10.3354/meps038201

[42] Widdows, J., Brinsley, M.D., Salkeld, P.N., et al. (1998) Use of Annular Flumes to Determine the Influence of Current Velocity and Bivalves on Material Flux at the Sediment-Water Interface. Estuaries, 21, 552-559.

[43] Newell, R.I.E. (2004) Ecosystem Influences of Natural and Cultivated Populations of Suspension-Feeding Bivalve Molluscs: A Review. Journal of Shellfish Research, 23, 51-62.
http://dx.doi.org/10.2307/1353294

[44] Noiri, Y., Kudo, I., Kiyosawa, H., et al. (2005) In-fluence of Iron and Temperature on Growth, Nutrient Utilization Ratios and Phytoplankton Species Composition in the Western Subarctic Pacific Ocean during the SEEDS Experiment. Progress in Oceanography, 64, 149-166.
http://dx.doi.org/10.1016/j.pocean.2005.02.006

[45] Hare, C.E., Leblanc, K., Ditullio, G.R., et al. (2007) Conse-quences of Increased Temperature and CO2 for Phytoplankton Community Structure in the Bering Sea. Marine Ecology Progress, 352, 9-16.
http://dx.doi.org/10.3354/meps07182

[46] Fekry, M.I., Tipton, P.A. and Gates, K.S. (2011) Kinetic Consequences of Replacing the Internucleotide Phosphorus Atoms in DNA with Arsenic. ACS Chemical Biology, 6, 127-130.
http://dx.doi.org/10.1021/cb2000023

[47] Saxton, M.A., Arnold, R.J., Bourbonniere, R.A., et al. (2012) Plasticity of Total and Intracellular Phosphorus Quotas in Microcystis aeruginosa Cultures and Lake Erie Algal Assemblages. Frontiers in Microbiology, 3, 3.
http://dx.doi.org/10.3389/fmicb.2012.00003

分享
Top