基于m序列的压缩感知测量矩阵构造
Construction of Compressed Sensing Matrixs Based on m Sequences

作者: 李 明 , 江 桦 , 裴立业 :解放军信息工程大学信息系统工程学院,河南 郑州 ;

关键词: 压缩感知测量矩阵m序列RIP列相关性Compressed Sensing Measurement Matrix m Sequences RIP Column Correlation

摘要:
测量矩阵作为压缩感知理论的核心内容,对信号的测量和重构会产生重大影响。本文主要基于m序列构造压缩感知测量矩阵。首先,给出一种压缩率为0.5的测量矩阵构造方法,利用该方法构造的测量矩阵元素取值集合较小,具有一定的循环特性。其次,结合有限域的理论,对利用m序列构造的测量矩阵做进一步改进,改进后测量矩阵的压缩率取值范围增大加。仿真结果表明:本文构造的测量矩阵的重构性能优于同大小的Gause测量矩阵,避免了随机性测量矩阵的不确定性,具有一定实用价值。

Abstract: The measurement matrix as the core of the compressed sensing theory, will have a significant im-pact on the measurement and reconstruction. This paper produces a method of compressed sensing measurement matrix through the m sequences. First of all, it gives a method to construct the measurement matrix with compression rate is 0.5; this measurement matrix has small element set and certain cycle characteristics. Secondly, for combining the theory of finite fields, the measure-ment matrix based on m sequence is further improved. The compression rate of the matrix mea-surement range is greatly increased. The simulation results show that the measurement matrix is constructed in this paper which is better than Gause measurement matrix reconstruction perfor-mance of the same size, avoids the random measurement matrix uncertainty and has a certain practical value.

文章引用: 李 明 , 江 桦 , 裴立业 (2016) 基于m序列的压缩感知测量矩阵构造。 无线通信, 6, 52-60. doi: 10.12677/HJWC.2016.62008

参考文献

[1] Candès, E., Romberg, J. and Tao, T. (2006) Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Transactions on Information Theory, 52, 489-509.
http://dx.doi.org/10.1109/TIT.2005.862083

[2] Candès, E. and Tao, T. (2006) Near Optimal Signal Recovery from Random Projections: Universal Encoding Strategies. IEEE Transactions on Information Theory, 52, 5406-5425.

[3] Candès, E. and Romberg, J. (2006) Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions. Foundations of Computational Mathematics, 6, 227-254.
http://dx.doi.org/10.1007/s10208-004-0162-x

[4] Donoho, D.L. (2006) Compressed Sensing. IEEE Transactions on Information Theory, 52, 1289-1306.

[5] Candès, E. and Tao, T. (2005) Decoding by Linear Programming. IEEE Transactions on Information Theory, 51, 4203-4215.
http://dx.doi.org/10.1109/TIT.2005.858979

[6] Gribonval, R. and Nielsen, M. (2003) Sparse Representations in Unions of Bases. IEEE Transactions on Information Theory, 49, 3320-3325.
http://dx.doi.org/10.1109/TIT.2003.820031

[7] Bourgain, J., Dilworth, S.J., Ford, K., et al. (2011) Explicit Constructions of RIP Matrices and Related Problems. Duke Mathematical Journal, 159, 145-185.
http://dx.doi.org/10.1215/00127094-1384809

[8] De Vore, R. (2007) Deterministic Constructions of Compressed Sensing Matrices. Journal of Complexity, 23, 918-925.
http://dx.doi.org/10.1016/j.jco.2007.04.002

[9] 林斌, 彭玉楼. 基于混沌序列的压缩感知测量矩阵构造算法[J]. 计算机工程与应用, 2013, 49(23): 199-202.

[10] 王侠, 王开, 王青云, 等. 压缩感知中的确定性随机观测矩阵构造[J]. 信号处理, 2014, 30(4): 436-442.

[11] 臧华中. 基于Logistic混沌–贝努力序列的循环压缩测量矩阵构造算法[J]. 四川理工学院学报(自然科学版), 2015, 28(5): 31-36.

[12] 粟娟, 李智, 李健. 基于切比雪夫扩频序列的测量矩阵构造算法[J]. 四川大学学报(工程科学版), 2015, 47(2): 155-160.

[13] 赵瑞珍, 王若乾, 张凤珍, 等. 分块的有序范德蒙矩阵作为压缩感知测量矩阵的研究[J]. 电子与信息学报, 2015, 37(6): 1317-1322.

[14] Ni, K., Datta, S., Mahanti, P., et al. (2011) Efficient Deterministic Compressed Sensing for Images with Chirps and Reed-Muller Codes. SIAM Journal on Imaging Sciences, 4, 931-953.
http://dx.doi.org/10.1137/100808794

[15] Dimakis, A.G., Smarandache, R. and Vontobel, P.O. (2012) LDPC Codes for Compressed Sensing. IEEE Transactions on Information Theory, 58, 3093-3114.
http://dx.doi.org/10.1109/TIT.2011.2181819

[16] Ge, X. and Xia, S.T. (2006) LDPC Codes Based on Berlekamp-Justesen Codes with Large Stopping Distances. Preceedings of IEEE Information Theory Workshop (ITW), Chengdu, 214-218.

[17] 许志强. 压缩感知[J]. 中国科学, 2012, 42(9): 865-877.

[18] Candès, E., Romberg, J. and Tao, T. (2006) Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59, 1207-1223.
http://dx.doi.org/10.1002/cpa.20124

[19] Welch, L.R. (1974) Lower Bounds on the Maximum Cross-Correlation of Signals. IEEE Transactions on Information Theory, 20, 397-399.
http://dx.doi.org/10.1109/TIT.1974.1055219

[20] 曾凡鑫, 葛利嘉. 无线通信中的序列设计原理[M]. 北京: 国防工业出版社, 2007.

分享
Top