弓长岭富铁矿围岩反射光谱特征及其指示意义浅析
Research on Reflectance Spectroscopy of Wall Rocks in Gongchangling Iron Deposit and Their Significance for Exploration

作者: 姚玉增 * , 李鹏宇 , 王肖营 :东北大学资源与土木工程学院,辽宁 沈阳;

关键词: 富铁矿围岩蚀变绿泥石弓长岭铁矿Rich Iron Ore Wall-Rock Alteration Chlorite Gongchangling Iron Ore Deposit

摘要: 弓长岭铁矿内产出的富铁矿体是我国为数不多的、可工业利用的富铁资源之一,富铁矿体周围发育有强烈的绿泥石化蚀变。本文采用ASD FieldSpec 3地物光谱仪对距富铁矿体不同位置蚀变围岩进行反射光谱测量,并提取2250 nm和2340 nm处光谱吸收特征,结果表明上述光谱吸收特征可以很好地表征富铁矿体围岩的蚀变强度。该研究对今后本区富铁矿的勘查具有一定的指导意义。

Abstract: The rich ore bodies occurred in Gongchangling iron deposit are the few industrial rich iron re-sources in China, and there are strong chloritization around the rich ore bodies. The reflectance spectroscopy of wall-rocks was measured by ASD Fieldpec3 and the characteristic features at wa-velength around 2250 nm and 2340 nm were extracted. The results indicate that the spectroscopic absorption features are well in accordance with wall-rock alteration intensity, which is helpful to the further exploration of rich iron ore.

文章引用: 姚玉增 , 李鹏宇 , 王肖营 (2016) 弓长岭富铁矿围岩反射光谱特征及其指示意义浅析。 地球科学前沿, 6, 66-71. doi: 10.12677/AG.2016.62008

参考文献

[1] 赵一鸣, 吴良士, 白鸽, 等. 中国主要金属矿床成矿规律[M]. 北京: 地质出版社, 2004.

[2] 程裕淇. 中国东北辽宁山东省前震旦纪鞍山式条带状铁矿中的富矿成因问题[J]. 地质学报, 1957, 37(2): 153-180.

[3] 关广岳. 论变质作用在鞍山式铁矿床富矿形成上的意义[J]. 地质学报, 1961, 41(1): 65-76.

[4] 施继锡, 李本超. 根据鞍本地区包裹体研究试论弓长岭磁铁富矿的成因[J]. 地球化学, 1980(1): 43-53.

[5] 赵斌, 李统锦. 鞍山弓长岭富铁矿床的形成机制和物理化学条件研究[J]. 地球化学, 1980(4): 333-344.

[6] 刘军, 靳淑韵. 辽宁弓长岭铁矿磁铁富矿的成因研究[J]. 现代地质, 2010, 24(1): 80-88.

[7] 陈江峰, 杨延龄, 李平, 等. 辽宁鞍山–本溪地区富磁铁矿床硫同位素地质研究[J]. 地质与勘探, 1985, 21(1): 32-37.

[8] 任英忱. 鞍本地区铁的氧化矿物特征及富铁矿的成因[J]. 矿物学报, 1982(4): 245-248.

[9] 陈光远, 黎美华, 汪雪芳, 等. 弓长岭铁矿成因矿物学专辑[J]. 岩石矿物, 1984(2): 1-266.

[10] 赵斌, 王声远, 李统锦. 混合花岗岩的成因及其与铁矿关系的实验研究[J]. 地球化学, 1979(3): 211-223.

[11] 刘洪波. 鞍山式富铁矿的成矿自催化与互催化作用[J]. 东北大学学报(自然科学版), 1995, 16(1): 11-15.

[12] Wang, E.D., Xia, J.M., Fu, J.F., et al. (2014) Formation Mechanism of Gongchangling High-Grade Magnetite Deposit Hosted in Archean BIF, Anshan-Benxi Area, Northeastern China. Ore Geology Reviews, 57, 308-321.
http://dx.doi.org/10.1016/j.oregeorev.2013.09.013

[13] 周世泰. 鞍山–本溪地区条带状铁矿地质[M]. 北京: 地质出版社, 1994.

[14] Clark, R.N. (1999) Spectroscopy of Rocks and Minerals, and Principal of Spectroscopy. In: Rencz, A.N., Ed., Manual of Remote Sensing, Vol. 3, Remote Sensing for the Earth Science, Wiley, New York, 3-58.

[15] Thompson, A.J.B., Hauff, P.L. and Robitaille, A.J. (1999) Alteration Mapping in Exploration: Application of Short- Wave Infrared (SWIR) Spectroscopy. SEG Newsletter, 39, 16-27.

[16] van Ruitenbeek, F.J.A., Cudahy, T. and Hale, M. (2005) Tracing Fluid Pathways in Fossil Hydrothermal Systems with Near-Infrared Spectroscopy. Geology, 33, 597-600.
http://dx.doi.org/10.1130/G21375.1

[17] Hally, S., Diles, J.H. and Tosdal, R.M. (2015) Footprints: Hydrothermal Alteration and Geochemical Dispersion around Porphyry Copper Deposits. SEG Newsletter, 100, 11-17.

[18] 张建民. 弓长岭BIF型富铁矿绿泥石成因矿物学研究[D]: [硕士学位论文]. 沈阳: 东北大学, 2015.

[19] 潘兆橹. 结晶学与矿物学(下册)[M]. 北京: 地质出版社, 1985.

分享
Top