基于噪声特性分析的稀疏度估计方法
Sparsity Estimation Method Based on Noise Characteristic Analysis

作者: 焦义民 * , 康春玉 , 曾祥旭 , 刘天宇 :海军大连舰艇学院,辽宁 大连;

关键词: 稀疏表示稀疏度估计OMP算法Sparse Representation Sparsity Estimation Orthogonal Matching Pursuit Algorithm

摘要:
稀疏表示方法经过几十年的发展,在很多领域得到了深入研究与应用。信号稀疏度的估计是对信号进行稀疏分解的工作中的重要环节。根据噪声的特性,提出了一种稀疏度估计方法。即通过构造傅立叶基字典,利用噪声能量在全频域均匀分布的特点,通过遍历信号在全频谱上的稀疏特性,逐步确定准确的信号稀疏度。仿真实验结果表明,提出的方法能有效的完成对信号稀疏度的估计。

Abstract: The sparse representation, after decades of development, has been deeply studied and applied in many fields. Estimation of signal sparsity is an important part of the work in the sparse decomposition of signal. According to the noise characteristics, this paper proposes a method for estimating sparse degree. By constructing the Fourier base dictionary, using the uniform distribution characteristics of noise energy in the whole frequency domain, and through the sparse characteristics of signal traversing the full spectrum, the accuracy of the signal sparsity is gradually determined. Simulation results show that the proposed method can effectively complete the estimation of signal sparsity.

文章引用: 焦义民 , 康春玉 , 曾祥旭 , 刘天宇 (2016) 基于噪声特性分析的稀疏度估计方法。 图像与信号处理, 5, 73-79. doi: 10.12677/JISP.2016.52010

参考文献

[1] 马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳. 基于主成分变换的图像稀疏度估计方法[J]. 物理学报, 2013, 62(20): 204-202.

[2] Kim, E. and Paul, G. (1987) Principal Component Analysis. Elsevier Science Publishers, Amsterdam, 37-52.

[3] Meyer, Y. (1993) Wavelets and Operators. Cambridge University Press, Cambridge.

[4] 张鹏飞, 金晓康, 汤倩, 张建明. 学习字典下自适应稀疏度估计的分解去噪算法[J]. 福建电脑, 2015(1): 6-8.

[5] 徐勇俊. 基于信号稀疏表示的字典设计[D]: [硕士学位论文]. 南京: 南京理工大学, 2013.

[6] 郭俊锋, 郑晓慧, 魏兴春. 滚动轴承振动信号的稀疏表示研究[J]. 甘肃科学学报, 2014, 26(3): 91-94.

[7] 彭志珍. 基于改进的匹配追踪算法的信号稀疏分解[D]: [硕士学位论文]. 武汉: 华中科技大学, 2011.

[8] 沈益青. 匹配追踪算法中稀疏度的自适应研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2013.

[9] Traub, J.F. and Woziakowski, H. (1980) A General Theory of Optimal Algorithms. Academic, New York.

[10] Donoho, D.L., Elad, M. and Temlyakov, V. (2006) Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise. IEEE Transactions on Information Theory, 52, 6-18.

分享
Top