第一类多环芳香烃的广义度距离和维纳相关指数
The Generalized Degree Distance and Wiener Related Indices of the First Members of Polycyclic Aromatic Hydrocarbons

作者: 钱昌芬 , 高 炜 :云南师范大学信息学院,云南 昆明;

关键词: 多环芳香烃分子结构广义度距离Polycyclic Aromatic Hydrocarbons Molecular Structure Generalized Degree Distance

摘要:
本文研究第一类多环芳香烃的化学拓扑指数。对第一类多环芳香烃的分子结构进行分析,计算出每一对顶点之间的距离,根据广义度距离和维纳相关指数的计算公式得到相应的结果。

Abstract: In this paper, we study the chemical topology indices of the first kind of polycyclic aromatic hy-drocarbons. By analyzing the molecular structure of the first kind of polycyclic aromatic hydro-carbons and calculating the distance for each pair of vertices, the generalized degree distance and Wiener related indices are obtained using their definitions.

文章引用: 钱昌芬 , 高 炜 (2016) 第一类多环芳香烃的广义度距离和维纳相关指数。 理论数学, 6, 134-142. doi: 10.12677/PM.2016.63020

参考文献

[1] Wiener, H. (1947) Structural Determination of Paraffin Boiling Points. American Chemical Society, 69, 17-20.
http://dx.doi.org/10.1021/ja01193a005

[2] Hosoya, H. (1988) On Some Counting Polynomials in Chemistry. Discrete Applied Mathematics, 19, 239-257.
http://dx.doi.org/10.1016/0166-218X(88)90017-0

[3] Schultz, H.P. (1989) Topological Organic Chemistry 1. Graph Theory and Topological Indices of Alkanes. Journal of Chemical Information and Modeling, 29, 227-228.
http://dx.doi.org/10.1021/ci00063a012

[4] Klavžar, S. and Gutman, I. (1997) Wiener Number of Vertex-Weighted Graphs and a Chemical Application. Discrete Applied Mathematics, 80, 73-81.
http://dx.doi.org/10.1016/S0166-218X(97)00070-X

[5] Iranmanesh, A. and Alizadeh, Y. (2009) Computing Hyper-Wiener and Schultz Indices of TUZ6[p.q] Nanotube by Gap Program. Digest Journal of Nanomaterials and Bi-ostructures, 4, 607-611.

[6] Iranmanesh, A. and Alizadeh, Y. (2009) Computing Szeged and Schultz Indices of HAC5C7C9[p,q] Nanotube by Gap Program, Digest. Nanomaterials and Biostructures, 4, 67-72.

[7] Alizadeh, Y., Iranmanesh, A. and Mirzaie, S. (2009) Computing Schultz Polynomial, Schultz Index of C60 Fullerene by Gap Program. Digest Journal of Nanomaterials and Biostructures, 4, 7-10.

[8] Eliasi, M. and Taeri, B. (2008) Schultz Polynomials of Composite Graphs. Applicable Analysis and Discrete Mathematics, 2, 285-296.
http://dx.doi.org/10.2298/AADM0802285E

[9] Halakoo, O., Khormali, O. and Mahmiani, A. (2009) Bounds for Schultz Index of Pentachains, Digest. Nanomaterials and Biostructures, 4, 687-691.

[10] Heydari, A. (2010) On the Modified Schultz Index of C4C8(S) Nanotubes. Digest Journal of Nanomaterials and Biostructures, 5, 51-56.

[11] Farahani, M.R. (2013) Zagreb Indices and Zagreb Polynomials of Polycyclic Aromatic Hydrocarbons. Chimica Acta, 2, 70-72.

[12] Huber, S.E., Mauracher, A. and Probst, M. (2003) Permeation of Low-Z Atoms through Carbon Sheets: Density Functional Theory Study on Energy Barriers and Deformation Effects. Chem. Eur., 9, 2974-2981.

[13] Jug, K. and Bredow, T. (2004) Models for the Treatment of Crystalline Solids and Surfaces. Compu-tational Chemistry, 25, 1551-1567.
http://dx.doi.org/10.1002/jcc.20080

[14] Farahani, M.R. (2013) Some Con-nectivity Indices of Polycyclic Aromatic Hydrocarbons (PAHs). Submitted for Publish.

[15] Brunvoll, J., Cyvin, B.N. and Cyvin, S.J. (1987) Enumeration and Classification of Benzenoid Hydrocarbons. Symmetry and Regular Hexagonal Benzenoids. Journal of Chemical Information and Modeling, 27, 171-177.
http://dx.doi.org/10.1021/ci00056a006

[16] Dias, J.R. (1996) From Benzenoid Hydrocarbons to Fullerene Carbons. MATCH Communications in Mathematical and in Computer Chemistry, 4, 57-85.

[17] Diudea, M.V. (2005) Nano Porous Carbon Allotropes by Septupling Map Operations. Journal of Chemical Information and Modeling, 45, 1002-1009.
http://dx.doi.org/10.1021/ci050054y

[18] Dress, A. and Brinkmann, G. (1996) Phantasmagorical Fulleroids. MATCH Communications in Mathematical and in Computer Chemistry, 33, 87-100.

[19] Gutman, I. and Klavžar, S. (1996) A Method for Calculationg Wiener Numbers of Benzenoid Hydrocarbons and Phenylenes. ACH Models Chem., 133, 389-399.

[20] Klavžar, S. (2008) A Bird’s Eye View of the Cut Method and a Survey of Its Ap-plications in Chemical Graph Theory. MATCH Communications in Mathematical and in Computer Chemistry, 60, 255-274.

分享
Top