﻿ 具有可变系数的三维混沌系统与五维超混沌系统的同步问题研究

# 具有可变系数的三维混沌系统与五维超混沌系统的同步问题研究On Synchronization of 5D Hyperchaotic System and 3D Chaotic System with Variable Coefficient

Abstract: In this paper, the 3D chaotic system and the 5D hyperchaotic system are synchronized via the center translation method, where the variable coefficient in the nonlinear part of the 3D chaotic system is taken as the uncertainty in the synchronization. The center of the state variables of the response 3D chaotic system is translated to the assigned state variables of the drive 5D hyper-chaotic system, such that the model of the error system is the same as that of the response system. Thus, synchronization of different systems is converted to stability control of the error system. This method can effectively simplify the design procedure for synchronization controller, and it can be applied to the study of drive system with uncertainty, so long as the synchronized state variables of the drive system and their derivatives are known or can be estimated by state observer.

[1] Liu, Y.Z., Jiang, C.S., Lin, C.S., et al. (2007) Chaos Synchronization between Two Different 4D Hyperchaotic Chen Systems. Chinese Physics, 16, 660-665.
http://dx.doi.org/10.1088/1009-1963/16/3/017

[2] 牛弘, 张国山. 一类具有可变系数的混沌系统的同步[J]. 物理学报, 2013, 62(13): 105-115.

[3] Niu, H., Zhang, G.S. and Wang, J.K. (2014) Chaos Synchronization of Chua’s Circuit and Lorenz System Based on Strictly Positive Realness. Proceedings of the 33th Chinese Control Conference, CCC 2014, Nanjing, 28-30 July 2014, 1972-1976.
http://dx.doi.org/10.1109/chicc.2014.6896932

[4] Salarieh, H. and Shahrokhi, M. (2008) Adaptive Synchroniza-tion of Two Different Chaotic Systems with Time Varying Unknown Parameters. Chaos, Solitons & Fractals, 37, 125-136.
http://dx.doi.org/10.1016/j.chaos.2006.08.038

[5] Zhu, C.X. (2009) Adaptive Synchronization of Two Novel Different Hyperchaotic Systems with Partly Uncertain Parameters. Applied Mathematics and Computation, 215, 557-561.
http://dx.doi.org/10.1016/j.amc.2009.05.026

[6] Fu, G.Y. and Li, Z.S. (2010) Adaptive Synchronization of a Hyperchaotic Lü System Based on Extended Passive Control. Chinese Physics B, 19, 060505-1-5.

[7] Kuntanapreeda, S. and Sangpet, T. (2012) Synchronization of Chaotic Systems with Unknown Pa-rameters Using Adaptive Passivity-Based Control. Journal of the Franklin Institute, 349, 2547-2569.
http://dx.doi.org/10.1016/j.jfranklin.2012.08.002

[8] 张文革, 韩京清. 一类混沌系统的状态观测与控制[J]. 控制与决策, 2000, 15(3): 301-304.

[9] 张国山, 李思瑶, 王江. 基于自抗扰控制的2个耦合神经元间的混沌同步[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(3): 263-268.

[10] 牛弘. 混沌及超混沌系统的分析、控制、同步与电路实现[D]: [博士学位论文]. 天津: 天津大学, 2014.

[11] 张国山, 牛弘. 一个基于Chen系统的新混沌系统的分析与同步[J]. 物理学报, 2012, 61(11): 137-147.

[12] 牛弘. 具有可变系数的三维混沌系统的稳定性控制与电路实现[J]. 动力系统与控制, 2016, 5(1): 31-40.

[13] Pecora, L.M. and Carroll, T.L. (1990) Synchronization in Chaotic Systems. Physical Review Letters, 64, 821-824.
http://dx.doi.org/10.1103/PhysRevLett.64.821

[14] 刘秉正, 彭建华. 非线性动力学[M]. 北京: 高等教育出版社, 2007.

Top