具有可变系数的三维混沌系统与五维超混沌系统的同步问题研究
On Synchronization of 5D Hyperchaotic System and 3D Chaotic System with Variable Coefficient

作者: 牛 弘 :天津科技大学电子信息与自动化学院,天津;

关键词: 中心平移同步法异结构同步非线性控制不确定性Synchronization via Center Translation Method Synchronization of Different Systems Nonlinear Control Uncertainty

摘要:
本文基于中心平移同步法,研究非线性部分具有可变系数,即非线性部分系数具有不确定性的三维混沌系统与五维超混沌系统的同步问题。通过将响应三维混沌系统状态变量的中心平移至驱动五维超混沌系统的指定状态变量,将异结构系统的状态同步问题转化为与响应系统模型相同的误差系统的稳定性控制问题。该方法可有效简化同步控制器的设计过程,并可应用于驱动系统模型具有不确定性但其需同步状态及其导数已知或可通过状态观测器估算的同步问题研究中。

Abstract: In this paper, the 3D chaotic system and the 5D hyperchaotic system are synchronized via the center translation method, where the variable coefficient in the nonlinear part of the 3D chaotic system is taken as the uncertainty in the synchronization. The center of the state variables of the response 3D chaotic system is translated to the assigned state variables of the drive 5D hyper-chaotic system, such that the model of the error system is the same as that of the response system. Thus, synchronization of different systems is converted to stability control of the error system. This method can effectively simplify the design procedure for synchronization controller, and it can be applied to the study of drive system with uncertainty, so long as the synchronized state variables of the drive system and their derivatives are known or can be estimated by state observer.

文章引用: 牛 弘 (2016) 具有可变系数的三维混沌系统与五维超混沌系统的同步问题研究。 动力系统与控制, 5, 41-47. doi: 10.12677/DSC.2016.52005

参考文献

[1] Liu, Y.Z., Jiang, C.S., Lin, C.S., et al. (2007) Chaos Synchronization between Two Different 4D Hyperchaotic Chen Systems. Chinese Physics, 16, 660-665.
http://dx.doi.org/10.1088/1009-1963/16/3/017

[2] 牛弘, 张国山. 一类具有可变系数的混沌系统的同步[J]. 物理学报, 2013, 62(13): 105-115.

[3] Niu, H., Zhang, G.S. and Wang, J.K. (2014) Chaos Synchronization of Chua’s Circuit and Lorenz System Based on Strictly Positive Realness. Proceedings of the 33th Chinese Control Conference, CCC 2014, Nanjing, 28-30 July 2014, 1972-1976.
http://dx.doi.org/10.1109/chicc.2014.6896932

[4] Salarieh, H. and Shahrokhi, M. (2008) Adaptive Synchroniza-tion of Two Different Chaotic Systems with Time Varying Unknown Parameters. Chaos, Solitons & Fractals, 37, 125-136.
http://dx.doi.org/10.1016/j.chaos.2006.08.038

[5] Zhu, C.X. (2009) Adaptive Synchronization of Two Novel Different Hyperchaotic Systems with Partly Uncertain Parameters. Applied Mathematics and Computation, 215, 557-561.
http://dx.doi.org/10.1016/j.amc.2009.05.026

[6] Fu, G.Y. and Li, Z.S. (2010) Adaptive Synchronization of a Hyperchaotic Lü System Based on Extended Passive Control. Chinese Physics B, 19, 060505-1-5.

[7] Kuntanapreeda, S. and Sangpet, T. (2012) Synchronization of Chaotic Systems with Unknown Pa-rameters Using Adaptive Passivity-Based Control. Journal of the Franklin Institute, 349, 2547-2569.
http://dx.doi.org/10.1016/j.jfranklin.2012.08.002

[8] 张文革, 韩京清. 一类混沌系统的状态观测与控制[J]. 控制与决策, 2000, 15(3): 301-304.

[9] 张国山, 李思瑶, 王江. 基于自抗扰控制的2个耦合神经元间的混沌同步[J]. 天津大学学报(自然科学与工程技术版), 2013, 46(3): 263-268.

[10] 牛弘. 混沌及超混沌系统的分析、控制、同步与电路实现[D]: [博士学位论文]. 天津: 天津大学, 2014.

[11] 张国山, 牛弘. 一个基于Chen系统的新混沌系统的分析与同步[J]. 物理学报, 2012, 61(11): 137-147.

[12] 牛弘. 具有可变系数的三维混沌系统的稳定性控制与电路实现[J]. 动力系统与控制, 2016, 5(1): 31-40.

[13] Pecora, L.M. and Carroll, T.L. (1990) Synchronization in Chaotic Systems. Physical Review Letters, 64, 821-824.
http://dx.doi.org/10.1103/PhysRevLett.64.821

[14] 刘秉正, 彭建华. 非线性动力学[M]. 北京: 高等教育出版社, 2007.

分享
Top